Abstract

We study scattering of light from multi-layer plasmonic nanowires and reveal that such structures can demonstrate both enhanced and suppressed scattering regimes. We employ the mode-expansion method and experimental data for material parameters and introduce an optimized core-shell nanowire design which exhibits simultaneously superscatter-ing and cloaking properties at different wavelengths in the visible spectrum.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11, 917–924 (2012).
    [CrossRef] [PubMed]
  2. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E72, 016623 (2005).
    [CrossRef]
  3. A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
    [CrossRef] [PubMed]
  4. A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (nano)particles,” Bull. Russ. Acad. Sci.: Physics74, 89–92 (2010).
    [CrossRef]
  5. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings form plasmonic cloaking,” Phys. Status Solidi RRL6, 46–48 (2012).
    [CrossRef]
  6. P. Y. Chen, J. Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24, OP281–304 (2012).
    [CrossRef] [PubMed]
  7. Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C, 114, 7324–7329 (2010).
    [CrossRef]
  8. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
    [CrossRef] [PubMed]
  9. Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98, 043101 (2011).
    [CrossRef]
  10. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108, 083902 (2012).
    [CrossRef] [PubMed]
  11. P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
    [CrossRef]
  12. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
    [CrossRef]
  13. B. Edwards, A. Al, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103, 153901 (2009)
    [CrossRef] [PubMed]
  14. C. A. Balanis, Advanced engineering electromagnetics (Wiley, 1989).
  15. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett.97, 263902 (2006).
    [CrossRef]
  16. E. Palik, Handbook of optical constants of solids (Academic Press, 1997).
  17. U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F: Metal Phys.4, 999–1014 (1974).
    [CrossRef]
  18. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

2012

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11, 917–924 (2012).
[CrossRef] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings form plasmonic cloaking,” Phys. Status Solidi RRL6, 46–48 (2012).
[CrossRef]

P. Y. Chen, J. Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24, OP281–304 (2012).
[CrossRef] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108, 083902 (2012).
[CrossRef] [PubMed]

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
[CrossRef]

2011

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98, 043101 (2011).
[CrossRef]

2010

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C, 114, 7324–7329 (2010).
[CrossRef]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
[CrossRef] [PubMed]

A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (nano)particles,” Bull. Russ. Acad. Sci.: Physics74, 89–92 (2010).
[CrossRef]

2009

B. Edwards, A. Al, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103, 153901 (2009)
[CrossRef] [PubMed]

2008

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef] [PubMed]

2006

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett.97, 263902 (2006).
[CrossRef]

2005

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E72, 016623 (2005).
[CrossRef]

1974

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F: Metal Phys.4, 999–1014 (1974).
[CrossRef]

Afshinmanesh, F.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
[CrossRef]

Al, A.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
[CrossRef]

B. Edwards, A. Al, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103, 153901 (2009)
[CrossRef] [PubMed]

Alu, A.

P. Y. Chen, J. Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24, OP281–304 (2012).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E72, 016623 (2005).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Advanced engineering electromagnetics (Wiley, 1989).

Belov, P. A.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings form plasmonic cloaking,” Phys. Status Solidi RRL6, 46–48 (2012).
[CrossRef]

Brongersma, M. L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
[CrossRef]

Cao, L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
[CrossRef]

Catrysse, P. B.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108, 083902 (2012).
[CrossRef] [PubMed]

Chen, P. Y.

P. Y. Chen, J. Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24, OP281–304 (2012).
[CrossRef] [PubMed]

Chettiar, U. K.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
[CrossRef]

Edwards, B.

B. Edwards, A. Al, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103, 153901 (2009)
[CrossRef] [PubMed]

Engheta, N.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
[CrossRef]

B. Edwards, A. Al, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103, 153901 (2009)
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E72, 016623 (2005).
[CrossRef]

Fan, P.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
[CrossRef]

Fan, S.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108, 083902 (2012).
[CrossRef] [PubMed]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98, 043101 (2011).
[CrossRef]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C, 114, 7324–7329 (2010).
[CrossRef]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
[CrossRef] [PubMed]

Filonov, D. S.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings form plasmonic cloaking,” Phys. Status Solidi RRL6, 46–48 (2012).
[CrossRef]

Kerkhoff, A.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
[CrossRef]

Kivshar, Y. S.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings form plasmonic cloaking,” Phys. Status Solidi RRL6, 46–48 (2012).
[CrossRef]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11, 917–924 (2012).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F: Metal Phys.4, 999–1014 (1974).
[CrossRef]

Luk’yanchuk, B. S.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett.97, 263902 (2006).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

Melin, K.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
[CrossRef]

Moreno, G.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
[CrossRef]

Palik, E.

E. Palik, Handbook of optical constants of solids (Academic Press, 1997).

Rainwater, D.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
[CrossRef]

Ruan, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108, 083902 (2012).
[CrossRef] [PubMed]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98, 043101 (2011).
[CrossRef]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C, 114, 7324–7329 (2010).
[CrossRef]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
[CrossRef] [PubMed]

Silveirinha, M. G.

B. Edwards, A. Al, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103, 153901 (2009)
[CrossRef] [PubMed]

Slobozhanyuk, A. P.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings form plasmonic cloaking,” Phys. Status Solidi RRL6, 46–48 (2012).
[CrossRef]

Soric, J.

P. Y. Chen, J. Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24, OP281–304 (2012).
[CrossRef] [PubMed]

Soric, J. C.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
[CrossRef]

Tribelsky, M. I.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett.97, 263902 (2006).
[CrossRef]

Verslegers, L.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108, 083902 (2012).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108, 083902 (2012).
[CrossRef] [PubMed]

Zharov, A. A.

A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (nano)particles,” Bull. Russ. Acad. Sci.: Physics74, 89–92 (2010).
[CrossRef]

Zharova, N. A.

A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (nano)particles,” Bull. Russ. Acad. Sci.: Physics74, 89–92 (2010).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11, 917–924 (2012).
[CrossRef] [PubMed]

Adv. Mater.

P. Y. Chen, J. Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24, OP281–304 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98, 043101 (2011).
[CrossRef]

Bull. Russ. Acad. Sci.: Physics

A. A. Zharov and N. A. Zharova, “On the electromagnetic cloaking of (nano)particles,” Bull. Russ. Acad. Sci.: Physics74, 89–92 (2010).
[CrossRef]

J. Phys. Chem. C

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C, 114, 7324–7329 (2010).
[CrossRef]

J. Phys. F: Metal Phys.

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F: Metal Phys.4, 999–1014 (1974).
[CrossRef]

Nat. Mater.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11, 917–924 (2012).
[CrossRef] [PubMed]

Nat. Photonics

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metalsemi-conductor photodetector,” Nat. Photonics6, 380–385 (2012)
[CrossRef]

New J. Phys.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14, 013054 (2012)
[CrossRef]

Phys. Rev. E

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett.

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
[CrossRef] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108, 083902 (2012).
[CrossRef] [PubMed]

B. Edwards, A. Al, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103, 153901 (2009)
[CrossRef] [PubMed]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett.97, 263902 (2006).
[CrossRef]

Phys. Status Solidi RRL

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings form plasmonic cloaking,” Phys. Status Solidi RRL6, 46–48 (2012).
[CrossRef]

Other

E. Palik, Handbook of optical constants of solids (Academic Press, 1997).

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

C. A. Balanis, Advanced engineering electromagnetics (Wiley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of (a) double-shell and (b) core-shell nanowires.

Fig. 2
Fig. 2

Real and imaginary parts of dielectric permittivity of bulk (a) silver and (b) silicon. (a) Comparison of the permittivity for silver with experimental data and modelled with the Drude formula. (b) Silicon experimental data vs. commonly used a constant value of 12.96.

Fig. 3
Fig. 3

NSCS of the 3-layer structure, using (a) Drude’s model and (b) experimental data.

Fig. 4
Fig. 4

(a) Maximum and (b) minimum values of NSCS of core-shell nanowire versus radii r1 and r2 in the visible wavelength region (380nm–750nm) using experimental data.

Fig. 5
Fig. 5

(a) NSCS of a core-shell structure with cloaking and superscattering properties at 427 nm and 733 nm, respectively. Dotted lines show the results for the case of lossless metal. (b) Field profile (dipole and monopole modes) as the absolute values of Eφ normalized to the incident wave amplitude in superscattering regime using realistic parameters and (c) far-field radiation pattern of the nanowire with plane-wave excitation from left.

Fig. 6
Fig. 6

Distribution of the magnetic field in cloaking (a,b) and superscattering (c,d) regimes for the plane wave incident from the left. The internal field profiles in (a,c) are shown as the absolute values of the total field Hz normalized to the incident wave amplitude. (b,d) Real part of Hz. The small grey circle in the plots (b,d) corresponds to the nanowire.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H total l = a ^ z H 0 e i ω t n = + exp ( in [ φ + π 2 ] ) [ τ n l J n ( m l ( r ) ) + ρ n l H n ( 1 ) ( m l ( r ) ) ] ,
S C S = 2 λ π ε L + 1 n = + | ρ n L + 1 | 2
γ bulk = ω ε i ( ε ε r ) , ω p 2 = ω 2 ( ε ε r ) 2 + ε i 2 ε ε r .

Metrics