Abstract

We proposed a scheme to manipulate the Goos-Hänchen shift of a light beam reflected from the depletion-type device via external voltage bias. It is shown that the lateral shift of the reflected probe beam can be easily controlled by adjusting the reverse voltage bias and the incidence angle. Using this scheme, the lateral shift can be tuned from negative to positive, without changing the original structure of the depletion-type device. Numerical calculations further indicate that the influence of structure parameters and light wavelength can be reduced via readjustment of the reverse bias. The proposed structure has the potential application for the integrated electronic devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am.61(5), 586 (1971).
    [CrossRef]
  2. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am.67(1), 103–107 (1977).
    [CrossRef]
  3. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am.54(10), 1190–1196 (1964).
    [CrossRef]
  4. H. M. Lai, F. C. Cheng, and W. K. Tang, “Goos-Hänchen effect around and off the critical angle,” J. Opt. Soc. Am. A3(4), 550–557 (1986).
    [CrossRef]
  5. F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett.68(7), 931–933 (1992).
    [CrossRef] [PubMed]
  6. E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett.70(15), 2281–2284 (1993).
    [CrossRef] [PubMed]
  7. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for gaussian optical beams,” Phys. Rev. Lett.75(8), 1511–1513 (1995).
    [CrossRef] [PubMed]
  8. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A25(4), 2099–2101 (1982).
    [CrossRef]
  9. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett.27(9), 680–682 (2002).
    [CrossRef] [PubMed]
  10. D. Felbacq, A. Moreau, and R. Smaâli, “Goos-Hänchen effect in the gaps of photonic crystals,” Opt. Lett.28(18), 1633–1635 (2003).
    [CrossRef] [PubMed]
  11. P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 067603 (2002).
    [CrossRef] [PubMed]
  12. X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010).
    [CrossRef]
  13. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett.91(13), 133903 (2003).
    [CrossRef] [PubMed]
  14. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005).
    [CrossRef]
  15. S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007).
    [CrossRef]
  16. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
    [CrossRef] [PubMed]
  17. Y. Chen, X. G. Wei, and B. S. Ham, “Optical properties of an N-type system in Doppler- broadened multilevel atomic media of the rubidium D2 line,” J. Phys. B42(6), 065506 (2009).
    [CrossRef]
  18. X. Chen, Y. Ban, and C.-F. Li, “Voltage-tunable lateral shifts of ballistic electrons in semiconductor quantum slabs,” J. Appl. Phys.105(9), 093710 (2009).
    [CrossRef]
  19. X. Chen, X. J. Lu, Y. Wang, and C. F. Li, “Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field,” Phys. Rev. B83(19), 195409 (2011).
    [CrossRef]
  20. T. Hashimoto and T. Yoshino, “Optical heterodyne sensor using the Goos-Hänchen shift,” Opt. Lett.14(17), 913–915 (1989).
    [CrossRef] [PubMed]
  21. X. Hu, Y. Huang, W. Zhang, D. K. Qing, and J. Peng, “Opposite Goos-Hänchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials,” Opt. Lett.30(8), 899–901 (2005).
    [CrossRef] [PubMed]
  22. L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A77(2), 023811 (2008).
    [CrossRef]
  23. S. Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A81(2), 023821 (2010).
    [CrossRef]
  24. S. Ziauddin and Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A85(5), 055804 (2012).
    [CrossRef]
  25. Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
    [CrossRef]
  26. X. Chen, M. Shen, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” J. Appl. Phys.104(12), 123101 (2008).
    [CrossRef]
  27. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).
  28. Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express20(2), 1903–1911 (2012).
    [CrossRef] [PubMed]
  29. Sadao Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, 2005).
  30. R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996).
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  32. N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002).
    [CrossRef] [PubMed]
  33. A. M. Steinberg and R. Y. Chiao, “Tunneling delay times in one and two dimensions,” Phys. Rev. A49(5), 3283–3295 (1994).
    [CrossRef] [PubMed]
  34. L. G. Wang, H. Chen, and S. Y. Zhu, “Wave propagation inside one-dimensional photonic crystals with single-negative materials,” Phys. Lett. A350(5-6), 410–415 (2006).
    [CrossRef]
  35. C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A76(1), 013811 (2007).
    [CrossRef]
  36. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett.33(13), 1437–1439 (2008).
    [CrossRef] [PubMed]
  37. M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009).
    [CrossRef]
  38. M. Merano, N. Hermosa, A. Aiello, and J. P. Woerdman, “Demonstration of a quasi-scalar angular Goos-Hänchen effect,” Opt. Lett.35(21), 3562–3564 (2010).
    [CrossRef] [PubMed]
  39. A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A80(6), 061801 (2009).
    [CrossRef]

2012

2011

X. Chen, X. J. Lu, Y. Wang, and C. F. Li, “Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field,” Phys. Rev. B83(19), 195409 (2011).
[CrossRef]

2010

S. Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A81(2), 023821 (2010).
[CrossRef]

X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010).
[CrossRef]

M. Merano, N. Hermosa, A. Aiello, and J. P. Woerdman, “Demonstration of a quasi-scalar angular Goos-Hänchen effect,” Opt. Lett.35(21), 3562–3564 (2010).
[CrossRef] [PubMed]

2009

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A80(6), 061801 (2009).
[CrossRef]

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009).
[CrossRef]

Y. Chen, X. G. Wei, and B. S. Ham, “Optical properties of an N-type system in Doppler- broadened multilevel atomic media of the rubidium D2 line,” J. Phys. B42(6), 065506 (2009).
[CrossRef]

X. Chen, Y. Ban, and C.-F. Li, “Voltage-tunable lateral shifts of ballistic electrons in semiconductor quantum slabs,” J. Appl. Phys.105(9), 093710 (2009).
[CrossRef]

2008

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
[CrossRef]

X. Chen, M. Shen, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” J. Appl. Phys.104(12), 123101 (2008).
[CrossRef]

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A77(2), 023811 (2008).
[CrossRef]

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett.33(13), 1437–1439 (2008).
[CrossRef] [PubMed]

2007

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A76(1), 013811 (2007).
[CrossRef]

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007).
[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

2006

L. G. Wang, H. Chen, and S. Y. Zhu, “Wave propagation inside one-dimensional photonic crystals with single-negative materials,” Phys. Lett. A350(5-6), 410–415 (2006).
[CrossRef]

2005

2003

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett.91(13), 133903 (2003).
[CrossRef] [PubMed]

D. Felbacq, A. Moreau, and R. Smaâli, “Goos-Hänchen effect in the gaps of photonic crystals,” Opt. Lett.28(18), 1633–1635 (2003).
[CrossRef] [PubMed]

2002

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 067603 (2002).
[CrossRef] [PubMed]

H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett.27(9), 680–682 (2002).
[CrossRef] [PubMed]

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002).
[CrossRef] [PubMed]

1995

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for gaussian optical beams,” Phys. Rev. Lett.75(8), 1511–1513 (1995).
[CrossRef] [PubMed]

1994

A. M. Steinberg and R. Y. Chiao, “Tunneling delay times in one and two dimensions,” Phys. Rev. A49(5), 3283–3295 (1994).
[CrossRef] [PubMed]

1993

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett.70(15), 2281–2284 (1993).
[CrossRef] [PubMed]

1992

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett.68(7), 931–933 (1992).
[CrossRef] [PubMed]

1989

1986

1983

1982

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A25(4), 2099–2101 (1982).
[CrossRef]

1977

1971

1964

Aiello, A.

M. Merano, N. Hermosa, A. Aiello, and J. P. Woerdman, “Demonstration of a quasi-scalar angular Goos-Hänchen effect,” Opt. Lett.35(21), 3562–3564 (2010).
[CrossRef] [PubMed]

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A80(6), 061801 (2009).
[CrossRef]

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009).
[CrossRef]

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett.33(13), 1437–1439 (2008).
[CrossRef] [PubMed]

Alexander, R. W.

Ban, Y.

X. Chen, Y. Ban, and C.-F. Li, “Voltage-tunable lateral shifts of ballistic electrons in semiconductor quantum slabs,” J. Appl. Phys.105(9), 093710 (2009).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berman, P. R.

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 067603 (2002).
[CrossRef] [PubMed]

Brener, I.

Bretenaker, F.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for gaussian optical beams,” Phys. Rev. Lett.75(8), 1511–1513 (1995).
[CrossRef] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett.68(7), 931–933 (1992).
[CrossRef] [PubMed]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Cao, X.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007).
[CrossRef]

Cao, Z. Q.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
[CrossRef]

Carniglia, C. K.

Chan, S. W.

Chen, H.

L. G. Wang, H. Chen, and S. Y. Zhu, “Wave propagation inside one-dimensional photonic crystals with single-negative materials,” Phys. Lett. A350(5-6), 410–415 (2006).
[CrossRef]

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002).
[CrossRef] [PubMed]

Chen, X.

X. Chen, X. J. Lu, Y. Wang, and C. F. Li, “Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field,” Phys. Rev. B83(19), 195409 (2011).
[CrossRef]

X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010).
[CrossRef]

X. Chen, Y. Ban, and C.-F. Li, “Voltage-tunable lateral shifts of ballistic electrons in semiconductor quantum slabs,” J. Appl. Phys.105(9), 093710 (2009).
[CrossRef]

X. Chen, M. Shen, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” J. Appl. Phys.104(12), 123101 (2008).
[CrossRef]

Chen, Y.

Y. Chen, X. G. Wei, and B. S. Ham, “Optical properties of an N-type system in Doppler- broadened multilevel atomic media of the rubidium D2 line,” J. Phys. B42(6), 065506 (2009).
[CrossRef]

Cheng, F. C.

Chiao, R. Y.

A. M. Steinberg and R. Y. Chiao, “Tunneling delay times in one and two dimensions,” Phys. Rev. A49(5), 3283–3295 (1994).
[CrossRef] [PubMed]

Dutriaux, L.

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett.68(7), 931–933 (1992).
[CrossRef] [PubMed]

Emile, O.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for gaussian optical beams,” Phys. Rev. Lett.75(8), 1511–1513 (1995).
[CrossRef] [PubMed]

Felbacq, D.

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005).
[CrossRef]

Gabbay, A.

Galstyan, T.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for gaussian optical beams,” Phys. Rev. Lett.75(8), 1511–1513 (1995).
[CrossRef] [PubMed]

Giles, C. L.

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A25(4), 2099–2101 (1982).
[CrossRef]

Gonzales, E.

Ham, B. S.

Y. Chen, X. G. Wei, and B. S. Ham, “Optical properties of an N-type system in Doppler- broadened multilevel atomic media of the rubidium D2 line,” J. Phys. B42(6), 065506 (2009).
[CrossRef]

Hao, J.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
[CrossRef]

Hashimoto, T.

Hermosa, N.

Horowitz, B. R.

Hu, X.

Huang, Y.

Ikram, M.

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A77(2), 023811 (2008).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005).
[CrossRef]

Jun, Y. C.

Lai, H. M.

Le Floch, A.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for gaussian optical beams,” Phys. Rev. Lett.75(8), 1511–1513 (1995).
[CrossRef] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett.68(7), 931–933 (1992).
[CrossRef] [PubMed]

Li, C. F.

X. Chen, X. J. Lu, Y. Wang, and C. F. Li, “Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field,” Phys. Rev. B83(19), 195409 (2011).
[CrossRef]

X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010).
[CrossRef]

X. Chen, M. Shen, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” J. Appl. Phys.104(12), 123101 (2008).
[CrossRef]

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A76(1), 013811 (2007).
[CrossRef]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett.91(13), 133903 (2003).
[CrossRef] [PubMed]

Li, C.-F.

X. Chen, Y. Ban, and C.-F. Li, “Voltage-tunable lateral shifts of ballistic electrons in semiconductor quantum slabs,” J. Appl. Phys.105(9), 093710 (2009).
[CrossRef]

Li, H. G.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
[CrossRef]

Li, S.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007).
[CrossRef]

Liu, N. H.

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002).
[CrossRef] [PubMed]

Long, L. L.

Lu, X. J.

X. Chen, X. J. Lu, Y. Wang, and C. F. Li, “Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field,” Phys. Rev. B83(19), 195409 (2011).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005).
[CrossRef]

Marseille, A.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett.70(15), 2281–2284 (1993).
[CrossRef] [PubMed]

McGuirk, M.

Merano, M.

M. Merano, N. Hermosa, A. Aiello, and J. P. Woerdman, “Demonstration of a quasi-scalar angular Goos-Hänchen effect,” Opt. Lett.35(21), 3562–3564 (2010).
[CrossRef] [PubMed]

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009).
[CrossRef]

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A80(6), 061801 (2009).
[CrossRef]

Moreau, A.

Ordal, M. A.

Peng, J.

Pfleghaar, E.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett.70(15), 2281–2284 (1993).
[CrossRef] [PubMed]

Qamar,

S. Ziauddin and Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A85(5), 055804 (2012).
[CrossRef]

Qamar, S.

S. Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A81(2), 023821 (2010).
[CrossRef]

Qing, D. K.

Renard, R. H.

Reno, J. L.

Shaner, E. A.

Shen, M.

X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010).
[CrossRef]

X. Chen, M. Shen, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” J. Appl. Phys.104(12), 123101 (2008).
[CrossRef]

Shen, Q. S.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
[CrossRef]

Smaâli, R.

Steinberg, A. M.

A. M. Steinberg and R. Y. Chiao, “Tunneling delay times in one and two dimensions,” Phys. Rev. A49(5), 3283–3295 (1994).
[CrossRef] [PubMed]

Tamir, T.

Tang, W. K.

van Exter, M. P.

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009).
[CrossRef]

Wang, H.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007).
[CrossRef]

Wang, L. G.

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A77(2), 023811 (2008).
[CrossRef]

L. G. Wang, H. Chen, and S. Y. Zhu, “Wave propagation inside one-dimensional photonic crystals with single-negative materials,” Phys. Lett. A350(5-6), 410–415 (2006).
[CrossRef]

Wang, Y.

X. Chen, X. J. Lu, Y. Wang, and C. F. Li, “Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field,” Phys. Rev. B83(19), 195409 (2011).
[CrossRef]

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
[CrossRef]

Ward, C. A.

Wei, R. R.

X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010).
[CrossRef]

Wei, X. G.

Y. Chen, X. G. Wei, and B. S. Ham, “Optical properties of an N-type system in Doppler- broadened multilevel atomic media of the rubidium D2 line,” J. Phys. B42(6), 065506 (2009).
[CrossRef]

Weis, A.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett.70(15), 2281–2284 (1993).
[CrossRef] [PubMed]

Wild, W. J.

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A25(4), 2099–2101 (1982).
[CrossRef]

Woerdman, J. P.

M. Merano, N. Hermosa, A. Aiello, and J. P. Woerdman, “Demonstration of a quasi-scalar angular Goos-Hänchen effect,” Opt. Lett.35(21), 3562–3564 (2010).
[CrossRef] [PubMed]

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A80(6), 061801 (2009).
[CrossRef]

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009).
[CrossRef]

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett.33(13), 1437–1439 (2008).
[CrossRef] [PubMed]

Wu, X.

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002).
[CrossRef] [PubMed]

Xiao, M.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Xie, C.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007).
[CrossRef]

Yang, X.

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007).
[CrossRef]

Yoshino, T.

Yu, T. Y.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
[CrossRef]

Zhang, W.

Zhang, Y.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Zhang, Z. F.

X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010).
[CrossRef]

X. Chen, M. Shen, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” J. Appl. Phys.104(12), 123101 (2008).
[CrossRef]

Zhu, S. Y.

L. G. Wang, H. Chen, and S. Y. Zhu, “Wave propagation inside one-dimensional photonic crystals with single-negative materials,” Phys. Lett. A350(5-6), 410–415 (2006).
[CrossRef]

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002).
[CrossRef] [PubMed]

Ziauddin, S.

S. Ziauddin and Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A85(5), 055804 (2012).
[CrossRef]

S. Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A81(2), 023821 (2010).
[CrossRef]

Zubairy, M. S.

S. Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A81(2), 023821 (2010).
[CrossRef]

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A77(2), 023811 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

X. Chen, R. R. Wei, M. Shen, Z. F. Zhang, and C. F. Li, “Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials,” Appl. Phys. B101(1-2), 283–289 (2010).
[CrossRef]

Appl. Phys. Lett.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hanchen effect,” Appl. Phys. Lett.93(9), 091103 (2008).
[CrossRef]

J. Appl. Phys.

X. Chen, M. Shen, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” J. Appl. Phys.104(12), 123101 (2008).
[CrossRef]

X. Chen, Y. Ban, and C.-F. Li, “Voltage-tunable lateral shifts of ballistic electrons in semiconductor quantum slabs,” J. Appl. Phys.105(9), 093710 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. B

S. Li, X. Yang, X. Cao, C. Xie, and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system,” J. Phys. B40(16), 3211–3219 (2007).
[CrossRef]

Y. Chen, X. G. Wei, and B. S. Ham, “Optical properties of an N-type system in Doppler- broadened multilevel atomic media of the rubidium D2 line,” J. Phys. B42(6), 065506 (2009).
[CrossRef]

Nat. Photonics

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

L. G. Wang, H. Chen, and S. Y. Zhu, “Wave propagation inside one-dimensional photonic crystals with single-negative materials,” Phys. Lett. A350(5-6), 410–415 (2006).
[CrossRef]

Phys. Rev. A

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A76(1), 013811 (2007).
[CrossRef]

A. M. Steinberg and R. Y. Chiao, “Tunneling delay times in one and two dimensions,” Phys. Rev. A49(5), 3283–3295 (1994).
[CrossRef] [PubMed]

A. Aiello, M. Merano, and J. P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A80(6), 061801 (2009).
[CrossRef]

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A77(2), 023811 (2008).
[CrossRef]

S. Ziauddin, S. Qamar, and M. S. Zubairy, “Coherent control of the Goos-Hänchen shift,” Phys. Rev. A81(2), 023821 (2010).
[CrossRef]

S. Ziauddin and Qamar, “Control of the Goos-Hänchen shift using a duplicated two-level atomic medium,” Phys. Rev. A85(5), 055804 (2012).
[CrossRef]

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A25(4), 2099–2101 (1982).
[CrossRef]

Phys. Rev. B

X. Chen, X. J. Lu, Y. Wang, and C. F. Li, “Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field,” Phys. Rev. B83(19), 195409 (2011).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002).
[CrossRef] [PubMed]

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 067603 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett.91(13), 133903 (2003).
[CrossRef] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett.68(7), 931–933 (1992).
[CrossRef] [PubMed]

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett.70(15), 2281–2284 (1993).
[CrossRef] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for gaussian optical beams,” Phys. Rev. Lett.75(8), 1511–1513 (1995).
[CrossRef] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005).
[CrossRef]

Other

Sadao Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, 2005).

R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996).

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the electrically controlled Goos-Hänchen shift system. (a) Gold slab at the center of the top of an n + doped GaAs layer serving as control electrode and the cathode on top of all around the edge with ohmic contact. A voltage bias applied between the control electrode and ohmic contact controls the depletion depth. (b) Diagram of the Goos-Hänchen shift and internal detailed structure of the MIS system.

Fig. 2
Fig. 2

Dependence of phase φ r on the incident angle θ under different controlling voltage. (a) Vg = −12V, (b) Vg = −10V, (c) Vg = −7V, (d) Vg = −4V, (e) Vg = −1V and (f) Vg = 0V with d1 = 41nm, d2 = 900nm, d3 + d4 = 29.17µm, n = 3.9 × 1017cm−3 and λ = 10µm.

Fig. 3
Fig. 3

Dependence of lateral shift Sr on the incident angle θ under different controlling voltage bias (a) Vg = −12V, (b) Vg = −10V, (c) Vg = −7V, (d) Vg = −4V, (e) Vg = −1V and (f) Vg = 0V, other parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

Dependence of Sr on the wavelength of probe beam under different applied voltage for the incident angle (a) θ = 75°, (b) θ = 75.2°. Other parameters are the same as in Fig. 2.

Fig. 5
Fig. 5

Dependence of S r on the insulating barrier width under different reverse bias for the incident angle (a) θ = 75°, (b) θ = 75.2°. Other parameters are the same as in Fig. 2.

Fig. 6
Fig. 6

Dependence of Sr on the electron density in the n + doped GaAs under different applied voltage for the incident angle (a) θ = 75°, (b) θ = 75.2°.Other parameters are the same as in Fig. 2.

Fig. 7
Fig. 7

Numerical simulations of the reflected beam from the MIS structure under different controlling bias Vg = −1V for (a), (b) and (c), and Vg = −10V for (d), (e) and (f). The half-widths of the probe beam are W = 300λ for (a) and (d),W = 800λ for (b) and (e), and W = 1600λ for (c) and (f). The black and red curves denote the incident and reflected probe beams, respectively. Other parameters are the same as in Fig. 2.

Fig. 8
Fig. 8

The lateral shifts versus beam half-width W under different controlling bias and incident angle. Other parameters are the same as in Fig. 2.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ε= ε ( 1 ω p 2 ω 2 +iωΓ )= ε ( 1 ω p 2 ω 2 + Γ 2 +i ω p 2 Γ ω( ω 2 + Γ 2 ) ),
ω p 2 = n q 2 ε 0 ε m * ,
Γ= 1 τ = q μ m * ,
m * / m 0 =0.0635+2.06× 10 22 n+1.16× 10 40 n 2 ,
μ(n)= μ min + μ max μ min 1+ (n/ n ref ) α ,
W depletion = [ 2 ε GaAs ε 0 qn ( ϕ s ) ] 1/2 ,
V g = ϕ s ε GaAs ε AlGaAs W barrier [ 2qn ε GaAs ε 0 | ϕ s | ] 1/2 + ϕ MS ,
M j ( k y ,ω, d j )=( cos[ k z j d j ] isin[ k z j d j ]/ q j i q j sin[ k z j d j ] cos[ k z j d j ] ),
r( k y ,ω)= q 0 ( Q 22 Q 11 )( q 0 2 Q 12 Q 21 ) q 0 ( Q 22 + Q 11 )( q 0 2 Q 12 + Q 21 ) ,
S r = λ 2π d φ r dθ ,
S r = λ 2π | r | 2 ( Re(r) dIm(r) dθ Im(r) dRe(r) dθ ),
E x (r) | z=0 = (1/2π) 1/2 r( k y )A ( k y )exp(i k y y)d k y ,
E x (i) | z=0 = (1/2π) 1/2 A( k y ) exp(i k y y)d k y ,
S r = + |r | 2 A 2 φ r k y d k y + |r | 2 A 2 d k y ,

Metrics