Abstract

We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore – together with a laser threshold reduction observed in the DFB lasers – it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Coleman, A. C. Bryce, and C. Jagadish, Advances in Semiconductor Lasers (Academy, 2012).
  2. J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (The Institution of Electrical Engineers IEE, 1998), Vol. 86.
  3. W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
    [CrossRef]
  4. J. Singh, Semiconductor Optoelectronics (McGraw-Hill, 1995), pp. 527.
  5. M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
    [CrossRef]
  6. W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
    [CrossRef]
  7. M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999).
    [CrossRef]
  8. A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
    [CrossRef]
  9. M. Carras and A. De Rossi, “Photonic modes of metallodielectric periodic waveguides in the mid-infrared spectral range,” Phys. Rev. B74(23), 235120 (2006).
    [CrossRef]
  10. A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
    [CrossRef] [PubMed]
  11. R. Bachelot, G. Wurtz, and P. Royer, “An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation,” Appl. Phys. Lett.73(23), 3333–3335 (1998).
    [CrossRef]
  12. G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys.5(3), 269–275 (1999).
    [CrossRef]
  13. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
    [CrossRef] [PubMed]
  14. N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
    [CrossRef] [PubMed]
  15. R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc.202(1), 77–83 (2001).
    [CrossRef] [PubMed]
  16. D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
    [CrossRef]
  17. J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
    [CrossRef]
  18. D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012).
    [CrossRef]
  19. D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
    [CrossRef] [PubMed]
  20. Comsol Multyphysics, www.comsol.com . The simulation is performed in 3D on a single period of the DFB cavity (p = 200nm) imposing Bloch periodic boundary conditions along the propagation direction.

2013

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

2012

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

2010

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

2009

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

2007

2006

M. Carras and A. De Rossi, “Photonic modes of metallodielectric periodic waveguides in the mid-infrared spectral range,” Phys. Rev. B74(23), 235120 (2006).
[CrossRef]

2005

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

2004

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
[CrossRef]

2001

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc.202(1), 77–83 (2001).
[CrossRef] [PubMed]

1999

M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999).
[CrossRef]

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys.5(3), 269–275 (1999).
[CrossRef]

1998

R. Bachelot, G. Wurtz, and P. Royer, “An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation,” Appl. Phys. Lett.73(23), 3333–3335 (1998).
[CrossRef]

Babuty, A.

Bachelot, R.

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys.5(3), 269–275 (1999).
[CrossRef]

R. Bachelot, G. Wurtz, and P. Royer, “An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation,” Appl. Phys. Lett.73(23), 3333–3335 (1998).
[CrossRef]

Beaudoin, G.

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

Belyanin, A.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Bleuel, T.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

Bour, D.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

Bousseksou, A.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012).
[CrossRef]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

Callard, S.

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

Carras, M.

M. Carras and A. De Rossi, “Photonic modes of metallodielectric periodic waveguides in the mid-infrared spectral range,” Phys. Rev. B74(23), 235120 (2006).
[CrossRef]

Chassagneux, Y.

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

Colombelli, R.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012).
[CrossRef]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

Corzine, S.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

Costantini, D.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012).
[CrossRef]

Coudevylle, J. R.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

Crozier, K. B.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

Cubukcu, E.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

Cuisin, C.

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
[CrossRef]

Dagens, B.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012).
[CrossRef]

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
[CrossRef]

De Rossi, A.

M. Carras and A. De Rossi, “Photonic modes of metallodielectric periodic waveguides in the mid-infrared spectral range,” Phys. Rev. B74(23), 235120 (2006).
[CrossRef]

De Wilde, Y.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

Decobert, J.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
[CrossRef]

Deubert, S.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Diehl, L.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

Duan, G.-H.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

Eisenstein, G.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Fevrier, M.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012).
[CrossRef]

Fischer, M.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

Forchel, A.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999).
[CrossRef]

Fuchs, P.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Gerschuetz, F.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Greffet, J.-J.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

Greusard, L.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

Habert, B.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

Hadass, D.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Hildebrandt, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc.202(1), 77–83 (2001).
[CrossRef] [PubMed]

Höfler, G.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

Hofmann, J.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999).
[CrossRef]

Kaiser, W.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Kamp, M.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999).
[CrossRef]

Keilmann, F.

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc.202(1), 77–83 (2001).
[CrossRef] [PubMed]

Knoll, B.

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc.202(1), 77–83 (2001).
[CrossRef] [PubMed]

Koeth, J.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Krakowski, M.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Lagay, N.

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
[CrossRef]

Laruelle, F.

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
[CrossRef]

Lelarge, F.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

Marquier, F.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

Mathwig, K.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Mikhelashvili, V.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Naehle, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Parillaud, O.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Patriarche, G.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

Pflügl, C.

Reinhard, M.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

Reithmaier, J. P.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999).
[CrossRef]

Royer, P.

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys.5(3), 269–275 (1999).
[CrossRef]

R. Bachelot, G. Wurtz, and P. Royer, “An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation,” Appl. Phys. Lett.73(23), 3333–3335 (1998).
[CrossRef]

Rungsawang, R.

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

Sagnes, I.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

Schäfer, F.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999).
[CrossRef]

Sirtori, C.

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express17(11), 9391–9400 (2009).
[CrossRef] [PubMed]

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

Thedrez, B.

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
[CrossRef]

Wojcik, A. K.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Wurtz, G.

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys.5(3), 269–275 (1999).
[CrossRef]

R. Bachelot, G. Wurtz, and P. Royer, “An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation,” Appl. Phys. Lett.73(23), 3333–3335 (1998).
[CrossRef]

Yu, N.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

Zeller, W.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Zhang, T. P.

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

Zhu, J.

Appl. Phys. Lett.

M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, “Low-threshold high-quantum efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett.74(4), 483–485 (1999).
[CrossRef]

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett.95(9), 091105 (2009).
[CrossRef]

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013).
[CrossRef]

R. Bachelot, G. Wurtz, and P. Royer, “An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation,” Appl. Phys. Lett.73(23), 3333–3335 (1998).
[CrossRef]

Electron. Lett.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett.41(14), 808–810 (2005).
[CrossRef]

Eur. Phys. J. Appl. Phys.

G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys.5(3), 269–275 (1999).
[CrossRef]

IEEE J. Quantum Electron.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron.48(1), 73–78 (2012).
[CrossRef]

J. Cryst. Growth

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, “MOVPE growth of AlGaInAs–InP highly tensile-strained MQWs for 1.3 mm low threshold lasers,” J. Cryst. Growth272(1-4), 543–548 (2004).
[CrossRef]

J. Microsc.

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc.202(1), 77–83 (2001).
[CrossRef] [PubMed]

Nano Lett.

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett.12(9), 4693–4697 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1-2), 19–25 (2001).
[CrossRef]

Phys. Rev. B

M. Carras and A. De Rossi, “Photonic modes of metallodielectric periodic waveguides in the mid-infrared spectral range,” Phys. Rev. B74(23), 235120 (2006).
[CrossRef]

Phys. Rev. Lett.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, F. Capasso, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Sensors (Basel Switzerland)

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Other

J. Singh, Semiconductor Optoelectronics (McGraw-Hill, 1995), pp. 527.

J. J. Coleman, A. C. Bryce, and C. Jagadish, Advances in Semiconductor Lasers (Academy, 2012).

J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (The Institution of Electrical Engineers IEE, 1998), Vol. 86.

Comsol Multyphysics, www.comsol.com . The simulation is performed in 3D on a single period of the DFB cavity (p = 200nm) imposing Bloch periodic boundary conditions along the propagation direction.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Scanning electronic microscope (SEM) image of the DFB laser facet. The ridge width is 9 μm. The inset shows a small area of the device top surface containing three periods of the metal grating. b, c, d, e) NSOM images and simulation of the DFB laser facet showing the transversal mode electromagnetic field distribution at different operating currents of the device. (b) Measurement far below threshold, at an injected current density of J = 4 kA/cm2 (color bar, VMAX = 0.07V). (c) Measurement far below threshold, at an injected current density of J = 7 kA/cm2 (color bar, VMAX = 0.12V).(d) Measurement at threshold, at J = 10 kA/cm2 (color bar, VMAX = 0.24V). (e) Laser regime, at J = 13 kA/cm2 (color bar, VMAX = 2.25V).f) Horizontal cross-section (along the x-direction shown in (a)) of the NSOM measurements plotted in solid colored curves. The experimental cross-section of the laser mode in (f), corresponding to the red solid line, is to be compared with the horizontal cross-sections of the simulated mode in the inset, black dashed line. Inset: Plot of the squared electric field obtained from a 3D finite element simulation. The lowest loss mode is the fundamental one, with a maximum of the electric field under the metal fingers of the grating. The squared electric field in the x-y plane is plotted.

Fig. 2
Fig. 2

a) Single mode spectra of a DFB laser with a grating periodicity of 201 nm, operating at J = 13kA/cm2. The SMSR is more than 30 dB. The spectra were recorded by using a cleaved multimode optical fiber which is coupled to an optical spectrum analyzer b) Typical Light-Current-Voltage (LIV) characteristics of a DFB laser (black solid curves) and an all-metal laser, equivalent to a DFB laser with a duty cycle of 100% (red solid curves). Therefore the measured output powers are not representative of the total device output. The DFB device exhibits a larger differential resistance, but it presents a threshold reduction of more than 5 kA/cm2 compared to the all-metal laser. Note: the DFB laser differential resistance is slightly larger than the one of the laser with full metallization (≈1 Ohm). The non uniformity of the top contact, due to the metal patterning, affects the current injection increasing the total resistance. The dashed lines are the light output power of a DFB laser (black dashed curve) and an all-metal laser (red dashed curve) fabricated on a structure with the same active region but with a cladding 200 nm thicker. In this case the threshold reduction of the DFB laser compared to the all-metal laser is of only 0.5 kA/cm2.

Fig. 3
Fig. 3

a, b) Plot of squared electric field of a facet simulation and inset containing a vertical cross-section for a mode of: (a) A fully metallic cavity. To note the presence of the mode field in the AR and at the interface of the metal. (b) A DFB cavity. The mode shows instead a single maximum, located in the AR. c) Normalized experimental cross-section along the vertical direction (y-direction, where the zero corresponds to the center of the AR), for the mode of the all-metal cavity (red line) and the mode of the DFB cavity (black line).

Fig. 4
Fig. 4

a) Results of the 2D finite element simulations showing the modal losses as a function of the duty cycle of the DFB grating. We selected the modes which are TM polarized and have an active region (AR) confinement factor of more than 30%. At DC≈60% the two high-loss modes diverge and the AR confinement factor decreases. This behavior - not observed in Ref [10]. – is in fact typical of DFB lasers with a cladding layer between the AR and the metallic grating [9]. b, c) Longitudinal finite element simulation of a DFB laser period. The squared electric field is plotted for: (b) low-loss mode (red dots in panel a). The electric field is located under the metallic fingers and has no consistent overlap with the metal. This is in agreement with the NSOM measurements in Fig. 1(e). c) high-loss mode (blue squares in panel a). The electric field is located under the air slits, between the metallic fingers, and has a consistent overlap with the metal.

Metrics