Abstract

A novel fiber-optic refractometer is proposed and demonstrated to achieve temperature- and axial strain-compensated refractive index measurement using highly sensitive outer-cladding modes in a tapered bend-insensitive fiber based Mach-Zehnder interferometer. Peak wavelength shifts associated with different spatial frequency peaks are calibrated to obtain a wavelength-related character matrix λMRI,T,ε for simultaneous measurement of multiple environmental variables. A phase-related character matrix ΦMRI,T,ε is also acquired by direct determination of refractive index, temperature, and axial strain induced phase shifts of the corresponding sensing modes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65(2), 167–180 (2002).
    [CrossRef]
  2. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  3. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett.31(3), 317–319 (2006).
    [CrossRef] [PubMed]
  4. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett.32(16), 2390–2392 (2007).
    [CrossRef] [PubMed]
  5. C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express16(22), 17882–17890 (2008).
    [CrossRef] [PubMed]
  6. T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express17(7), 5736–5742 (2009).
    [CrossRef] [PubMed]
  7. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett.34(1), 76–78 (2009).
    [CrossRef] [PubMed]
  8. M. Han, F. W. Guo, and Y. F. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett.35(3), 399–401 (2010).
    [CrossRef] [PubMed]
  9. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express19(9), 7937–7944 (2011).
    [CrossRef] [PubMed]
  10. K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express19(12), 11769–11779 (2011).
    [CrossRef] [PubMed]
  11. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett.37(1), 67–69 (2012).
    [CrossRef] [PubMed]
  12. O. Frazão, L. A. Ferreira, and F. M. Araújo, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Opt.24(3–4), 227–244 (2005).
  13. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol.21(5), 1320–1327 (2003).
    [CrossRef]
  14. R. Yang, Y.-S. Yu, C. Chen, Y. Xue, X.-L. Zhang, J.-C. Guo, C. Wang, F. Zhu, B.-L. Zhang, Q.-D. Chen, and H.-B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol.30(19), 3126–3132 (2012).
    [CrossRef]
  15. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
    [CrossRef]
  16. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett.37(12), 2283–2285 (2012).
    [CrossRef] [PubMed]
  17. H.-J. Kim, O.-J. Kwon, S. B. Lee, and Y.-G. Han, “Polarization-dependent refractometer for discrimination of temperature and ambient refractive index,” Opt. Lett.37(11), 1802–1804 (2012).
    [CrossRef] [PubMed]
  18. P. Lu, J. Harris, Y. Xu, Y. Lu, L. Chen, and X. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett.37(22), 4567–4569 (2012).
    [CrossRef] [PubMed]
  19. D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG-LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
    [CrossRef]
  20. Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997).
    [CrossRef]
  21. H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, “Simultaneous measurement of strain, temperature and vibration frequency using a fiber-optic sensor,” Meas. Sci. Technol.13(8), 1191–1196 (2002).
    [CrossRef]
  22. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31(12), 1794–1796 (2006).
    [CrossRef] [PubMed]
  23. C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol.13(2), 98–107 (2007).
    [CrossRef]
  24. T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
    [CrossRef]
  25. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett.35(16), 2777–2779 (2010).
    [CrossRef] [PubMed]
  26. L. Men, P. Lu, and Q. Chen, “Intelligent multiparameter sensing with fiber Bragg gratings,” Appl. Phys. Lett.93(7), 071110 (2008).
    [CrossRef]
  27. S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous Measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
    [CrossRef]
  28. N. J. Alberto, C. A. Marques, J. L. Pinto, and R. N. Nogueira, “Three-parameter optical fiber sensor based on a tilted fiber Bragg grating,” Appl. Opt.49(31), 6085–6091 (2010).
    [CrossRef]
  29. C. Trono, F. Baldini, M. Brenci, F. Chiavaioli, and M. Mugnaini, “Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings,” Meas. Sci. Technol.22(7), 075204 (2011).
    [CrossRef]
  30. M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” J. Lightwave Technol.27(3), 376–382 (2009).
    [CrossRef]
  31. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997).
    [CrossRef]

2012 (6)

2011 (3)

2010 (4)

2009 (4)

2008 (3)

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
[CrossRef]

L. Men, P. Lu, and Q. Chen, “Intelligent multiparameter sensing with fiber Bragg gratings,” Appl. Phys. Lett.93(7), 071110 (2008).
[CrossRef]

C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express16(22), 17882–17890 (2008).
[CrossRef] [PubMed]

2007 (2)

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett.32(16), 2390–2392 (2007).
[CrossRef] [PubMed]

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol.13(2), 98–107 (2007).
[CrossRef]

2006 (2)

2005 (2)

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

O. Frazão, L. A. Ferreira, and F. M. Araújo, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Opt.24(3–4), 227–244 (2005).

2003 (1)

2002 (2)

S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65(2), 167–180 (2002).
[CrossRef]

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, “Simultaneous measurement of strain, temperature and vibration frequency using a fiber-optic sensor,” Meas. Sci. Technol.13(8), 1191–1196 (2002).
[CrossRef]

1997 (2)

Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997).
[CrossRef]

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997).
[CrossRef]

Albert, J.

Alberto, N. J.

Araújo, F. M.

O. Frazão, L. A. Ferreira, and F. M. Araújo, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Opt.24(3–4), 227–244 (2005).

Auguste, J.-L.

Baldini, F.

C. Trono, F. Baldini, M. Brenci, F. Chiavaioli, and M. Mugnaini, “Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings,” Meas. Sci. Technol.22(7), 075204 (2011).
[CrossRef]

Bang, H.-J.

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, “Simultaneous measurement of strain, temperature and vibration frequency using a fiber-optic sensor,” Meas. Sci. Technol.13(8), 1191–1196 (2002).
[CrossRef]

Bao, X.

Baptista, J. M.

Bennion, I.

K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express19(12), 11769–11779 (2011).
[CrossRef] [PubMed]

Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997).
[CrossRef]

Bickham, S. R.

Blanc, W.

Bookbinder, D. C.

Brenci, M.

C. Trono, F. Baldini, M. Brenci, F. Chiavaioli, and M. Mugnaini, “Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings,” Meas. Sci. Technol.22(7), 075204 (2011).
[CrossRef]

Caucheteur, C.

Chen, C.

Chen, L.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

L. Men, P. Lu, and Q. Chen, “Intelligent multiparameter sensing with fiber Bragg gratings,” Appl. Phys. Lett.93(7), 071110 (2008).
[CrossRef]

Chen, Q.-D.

Chiavaioli, F.

C. Trono, F. Baldini, M. Brenci, F. Chiavaioli, and M. Mugnaini, “Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings,” Meas. Sci. Technol.22(7), 075204 (2011).
[CrossRef]

Cui, Y.

Culshaw, B.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997).
[CrossRef]

da Cruz, A. R.

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG-LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

Desorcie, R. B.

Dewynter, V.

Dussardier, B.

Englebert, J. J.

Enríquez, D. A. C.

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG-LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

Farrell, G.

Ferdinand, P.

Ferreira, L. A.

O. Frazão, L. A. Ferreira, and F. M. Araújo, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Opt.24(3–4), 227–244 (2005).

Frazão, O.

Giraldi, M. T. M. R.

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG-LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

Guo, F. W.

Guo, J.-C.

Guo, T.

Han, M.

Han, Y.-G.

Harris, J.

Henderson, P. J.

Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997).
[CrossRef]

Hong, C.-S.

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, “Simultaneous measurement of strain, temperature and vibration frequency using a fiber-optic sensor,” Meas. Sci. Technol.13(8), 1191–1196 (2002).
[CrossRef]

Hu, D. J. J.

Jackson, D. A.

Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997).
[CrossRef]

Jeong, M.-Y.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous Measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Jiang, M.

Jin, W.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997).
[CrossRef]

Johnson, J. J.

Kang, H.-K.

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, “Simultaneous measurement of strain, temperature and vibration frequency using a fiber-optic sensor,” Meas. Sci. Technol.13(8), 1191–1196 (2002).
[CrossRef]

Kim, C.-G.

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, “Simultaneous measurement of strain, temperature and vibration frequency using a fiber-optic sensor,” Meas. Sci. Technol.13(8), 1191–1196 (2002).
[CrossRef]

Kim, H.-J.

Kobelke, J.

Konstantaki, M.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997).
[CrossRef]

Krug, P. A.

Kwon, O.-J.

Laffont, G.

Lee, J.

Lee, S. B.

Lee, S.-M.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous Measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Lewis, K. A.

Li, M.-J.

Liang, R.

Lim, J. L.

Liu, D.

Lu, P.

P. Lu, J. Harris, Y. Xu, Y. Lu, L. Chen, and X. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett.37(22), 4567–4569 (2012).
[CrossRef] [PubMed]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

L. Men, P. Lu, and Q. Chen, “Intelligent multiparameter sensing with fiber Bragg gratings,” Appl. Phys. Lett.93(7), 071110 (2008).
[CrossRef]

Lu, Y.

Lu, Y. F.

Luan, F.

Mansuripur, M.

Marques, C. A.

Martynkien, T.

Mawatari, T.

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
[CrossRef]

McDermott, M. A.

Mégret, P.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

L. Men, P. Lu, and Q. Chen, “Intelligent multiparameter sensing with fiber Bragg gratings,” Appl. Phys. Lett.93(7), 071110 (2008).
[CrossRef]

Michie, W. C.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997).
[CrossRef]

Mugnaini, M.

C. Trono, F. Baldini, M. Brenci, F. Chiavaioli, and M. Mugnaini, “Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings,” Meas. Sci. Technol.22(7), 075204 (2011).
[CrossRef]

Nelson, D.

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
[CrossRef]

Nogueira, R. N.

Nolan, D. A.

Pagnoux, D.

Peyghambarian, N.

Phan Huy, M. C.

Pinto, J. L.

Polynkin, A.

Polynkin, P.

Ran, Z.-L.

Rao, Y. J.

Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997).
[CrossRef]

Rao, Y.-J.

Roy, P.

Ruffin, P.

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol.13(2), 98–107 (2007).
[CrossRef]

Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31(12), 1794–1796 (2006).
[CrossRef] [PubMed]

Saini, S. S.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous Measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Santos, J. L.

Schuster, K.

Semenova, Y.

Shum, P. P.

Silva, R. M.

Singh, S.

S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65(2), 167–180 (2002).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Sun, H.-B.

Sun, Q.

Tam, H.-Y.

Tandon, P.

Thursby, G.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997).
[CrossRef]

Tong, W.

Trono, C.

C. Trono, F. Baldini, M. Brenci, F. Chiavaioli, and M. Mugnaini, “Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings,” Meas. Sci. Technol.22(7), 075204 (2011).
[CrossRef]

Urbanczyk, W.

Wang, C.

Wang, G.

Wang, P.

Wang, Q.

Wang, Y.

Wang, Y.-P.

Wei, H.

Wo, J.

Wojcik, J.

Wu, Q.

Wuilpart, M.

Xu, Y.

Xue, Y.

Yan, Z.

Yang, R.

Yin, S.

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol.13(2), 98–107 (2007).
[CrossRef]

Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31(12), 1794–1796 (2006).
[CrossRef] [PubMed]

Yong, Z.

Yu, Y.-S.

Zhan, C.

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol.13(2), 98–107 (2007).
[CrossRef]

Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31(12), 1794–1796 (2006).
[CrossRef] [PubMed]

Zhang, B.-L.

Zhang, L.

K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express19(12), 11769–11779 (2011).
[CrossRef] [PubMed]

Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997).
[CrossRef]

Zhang, X.-L.

Zhou, K.

Zhu, F.

Zhu, T.

Zhu, Y.

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol.13(2), 98–107 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

L. Men, P. Lu, and Q. Chen, “Intelligent multiparameter sensing with fiber Bragg gratings,” Appl. Phys. Lett.93(7), 071110 (2008).
[CrossRef]

Electron. Lett. (1)

Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system,” Electron. Lett.33(24), 2063–2064 (1997).
[CrossRef]

Fiber Integr. Opt. (1)

O. Frazão, L. A. Ferreira, and F. M. Araújo, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Opt.24(3–4), 227–244 (2005).

IEEE Photon. Technol. Lett. (1)

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous Measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (2)

C. Trono, F. Baldini, M. Brenci, F. Chiavaioli, and M. Mugnaini, “Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings,” Meas. Sci. Technol.22(7), 075204 (2011).
[CrossRef]

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, “Simultaneous measurement of strain, temperature and vibration frequency using a fiber-optic sensor,” Meas. Sci. Technol.13(8), 1191–1196 (2002).
[CrossRef]

Opt. Eng. (1)

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng.36(2), 598–609 (1997).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

C. Zhan, Y. Zhu, S. Yin, and P. Ruffin, “Multi-parameter harsh environment sensing using asymmetric Bragg gratings inscribed by IR femtosecond irradiation,” Opt. Fiber Technol.13(2), 98–107 (2007).
[CrossRef]

Opt. Laser Technol. (1)

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG-LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

Opt. Lett. (11)

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett.31(3), 317–319 (2006).
[CrossRef] [PubMed]

Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31(12), 1794–1796 (2006).
[CrossRef] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett.32(16), 2390–2392 (2007).
[CrossRef] [PubMed]

J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett.37(1), 67–69 (2012).
[CrossRef] [PubMed]

H.-J. Kim, O.-J. Kwon, S. B. Lee, and Y.-G. Han, “Polarization-dependent refractometer for discrimination of temperature and ambient refractive index,” Opt. Lett.37(11), 1802–1804 (2012).
[CrossRef] [PubMed]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett.37(12), 2283–2285 (2012).
[CrossRef] [PubMed]

M. Han, F. W. Guo, and Y. F. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett.35(3), 399–401 (2010).
[CrossRef] [PubMed]

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett.35(16), 2777–2779 (2010).
[CrossRef] [PubMed]

O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett.34(1), 76–78 (2009).
[CrossRef] [PubMed]

P. Lu, J. Harris, Y. Xu, Y. Lu, L. Chen, and X. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett.37(22), 4567–4569 (2012).
[CrossRef] [PubMed]

Phys. Scr. (1)

S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65(2), 167–180 (2002).
[CrossRef]

Smart Mater. Struct. (1)

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) A SEM cross-sectional image of the bend-insensitive fiber etched with 5% hydrofluoric acid solution for 2 minutes; (b) A schematic illustration of the tapered bend-insensitive fiber based Mach-Zehnder interferometer under various external disturbances with an inset of the abrupt taper picture.

Fig. 2
Fig. 2

Flow chart of the demodulation algorithm for an interference spectrum between the fundamental mode and multiple cladding modes.

Fig. 3
Fig. 3

(a) Transmission spectrum of the BIF-MZI suspended in air at 24.6 °C with zero-strain; (b) FFT spectrum of the BIF-MZI with an inset of the simulated mode field patterns of the fundamental mode, IC mode, OC-1 mode, the OC-2 mode, the OC-3 mode, and OC-4 mode respectively.

Fig. 4
Fig. 4

(a) Filtered transmission spectra of the BIF-MZI corresponding to isolated spatial frequency components; (b) Spatial frequency dependent phase spectrum of the BIF-MZI.

Fig. 5
Fig. 5

Transmission spectra of the BIF-MZI submerged in solutions of 10% and 25% glycerol at 20.0 °C with zero-strain.

Fig. 6
Fig. 6

Filtered transmission spectra of the BIF-MZI in solutions of 10% and 25% glycerol corresponding to different groups of outer-cladding modes of (a) the OC-1 mode, (b) the OC-2 mode, and (c) the OC-3 mode.

Fig. 7
Fig. 7

Spatial frequency dependent phase spectra of the BIF-MZI in solutions of 10% and 25% glycerol.

Fig. 8
Fig. 8

Peak wavelength shift calibration curves for (a) refractive index, (b) temperature, and (c) axial strain, for the OC-1, OC-2, and OC-3 modes.

Fig. 9
Fig. 9

Phase shift calibration curves for (a) refractive index, (b) temperature, and (c) axial strain, for the OC-1, OC-2, and OC-3 modes.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ ij = Φ 01 Φ ij = 2πL λ ( n eff 01 n eff ij )= 2πΔ n eff ij L λ ,
λ m ij = Δ n eff ij L m .
I= I 01 + ij I ij +2 ij I 01 I ij cos( 2πΔ n eff ij L λ ) .
Δ λ ij = λ m1 ij λ m ij λ 0 2 Δ n eff ij L ,
ξ ij = 1 Δ λ ij Δ n eff ij L λ 0 2 .
δλ=δ( Δ n eff L m )=( δ( Δ n eff ) Δ n eff )λ,
δΦ=δ( 2π λ 0 2 ξ λ )=2πξδλ.
δλ=( δ( Δ n eff,RI ) Δ n eff )λ,
δΦ= 2πLδ( Δ n eff,RI ) λ .
δλ=( δ( Δ n eff,T ) Δ n eff )λ,
δΦ= 2πLδ( Δ n eff,T ) λ .
δλ=( δL L + δ( Δ n eff,ε ) Δ n eff,ε )λ,
δΦ= 2π( Δ n eff,ε δL+Lδ( Δ n eff,ε ) ) λ .
( Δ λ 1 Δ λ 2 Δ λ 3 )= M λ RI,T,ε ( ΔRI ΔT Δε )=( C λ RI 1 C λ T 1 C λ ε 1 C λ RI 2 C λ T 2 C λ ε 2 C λ RI 3 C λ T 3 C λ ε 3 )( ΔRI ΔT Δε ),
( ΔRI ΔT Δε )= M λ RI,T,ε 1 ( Δ λ 1 Δ λ 2 Δ λ 3 ),
( Δ Φ 1 Δ Φ 2 Δ Φ 3 )= M Φ RI,T,ε ( ΔRI ΔT Δε )=( C Φ RI 1 C Φ T 1 C Φ ε 1 C Φ RI 2 C Φ T 2 C Φ ε 2 C Φ RI 3 C Φ T 3 C Φ ε 3 )( ΔRI ΔT Δε ),
( ΔRI ΔT Δε )= M Φ RI,T,ε 1 ( Δ Φ 1 Δ Φ 2 Δ Φ 3 ),
( δRI δT δε )= M Φ ' RI,T,ε Δ ( δ Φ 1 δ Φ 2 δ Φ 3 ),

Metrics