Abstract

Visualization of data concerns most scientists. The use of color is required in order to display multidimensional information. In addition, color encoding a univariate image can improve the interpretation significantly. However up to 10% of the adult male population are affected by a red-green color perception deficiency which hampers the correct interpretation and appreciation of color encoded information. This work attempts to give guidelines on how to display a given dataset in a balanced manner. Three novel color maps are proposed providing readers with normal color perception a maximum of color contrast while being a good compromise for readers with color perception deficiencies.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Bergman, B. E. Rogowitz, and L. A. Treinish, “A rule-based tool for assisting colormap selection,” IEEE T Vis Comput Gr, 1070–2385/95 (1995).
  2. H. Levkowitz and G. T. Herman, “Color scales for image data,” IEEE Comput Graph12, 72–80 (1992).
    [CrossRef]
  3. H. Levkowitz, “Perceptual steps along color scales,” Int J Imag Syst Tech7, 97–101 (1996).
    [CrossRef]
  4. C. G. Healey, “Choosing effective colours for data visualization,” IEEE T Vis Comput Gr pp. 263–270 (1996).
  5. B. E. Rogowitz and L. A. Treinish, “Data visualization: the end of the rainbow,” IEEE Spectrum35, 52–59 (1998).
    [CrossRef]
  6. S. Silva, J. Madeira, and B. Santos, “There is more to color scales than meets the eye: A review on the use of color in visualization,” IEEE Infor Vis pp. 943–950 (2007).
  7. S. Silva, B. Sousa Santos, and J. Madeira, “Using color in visualization: A survey,” IEEE Comput Graph35, 320–333 (2011).
    [CrossRef]
  8. W. Swanson and J. Cohen, “Color vision,” Ophthalmol Clin North Am16, 179–203 (2003).
    [CrossRef] [PubMed]
  9. A. Light and P. Bartlein, “The end of the rainbow? color schemes for improved data graphics,” Eos T Am Geophys Un85(40):385 (2004).
    [CrossRef]
  10. H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J Opt Soc Am A14, 2647–2655 (1997).
    [CrossRef]
  11. B. Dougherty and A. Wade, “Vischeck,” http://www.vischeck.com/ (2006).
  12. National Institutes of Health, “ImageJ,” http://rsb.info.nih.gov/ij/ (2012).
  13. M. Simunovic, “Colour vision deficiency,” Eye24, 747–755 (2010).
    [CrossRef]
  14. M. Okabe and K. Ito, “Color Universal Design (CUD): How to make figures and presentations that are friendly to colorblind people,” http://jfly.iam.u-tokyo.ac.jp/color/ (2008).
  15. G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans Image Process6, 901–932 (1997).
    [CrossRef] [PubMed]
  16. C. Solomon and T. Breckon, Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab (Wiley, 2011), 1st ed.
  17. G. Kindlmann, E. Reinhard, and S. Creem, “Face-based luminance matching for perceptual colormap generation,” IEEE T Vis Comput Gr pp. 299–306 (2002).
  18. C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).
  19. J. A. Ross, “Colour-blindness: how to alienate a grant reviewer,” Nature445, 593–593 (2007).
    [CrossRef] [PubMed]
  20. C. Miall, “Readers see red over low-impact graphics,” Nature445, 147–147 (2007).
    [CrossRef] [PubMed]
  21. W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
    [CrossRef]
  22. T. T W J Gadella, T. Jovin, and R. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,” Biophys Chem48, 221–239 (1993).
    [CrossRef]
  23. L. W. MacDonald, “Using color effectively in computer graphics,” IEEE Comp Graph19, 20–35 (1999).
    [CrossRef]
  24. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006).
    [CrossRef] [PubMed]
  25. T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
    [CrossRef] [PubMed]
  26. S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
    [CrossRef]
  27. Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
    [CrossRef] [PubMed]
  28. M. Geissbuehler, Z. Kadlecova, H.-A. Klok, and T. Lasser, “Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells,” Biomed Opt Express3, 2526–2536 (2012).
  29. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
    [CrossRef] [PubMed]

2012 (6)

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
[CrossRef] [PubMed]

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
[CrossRef]

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

M. Geissbuehler, Z. Kadlecova, H.-A. Klok, and T. Lasser, “Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells,” Biomed Opt Express3, 2526–2536 (2012).

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

2011 (1)

S. Silva, B. Sousa Santos, and J. Madeira, “Using color in visualization: A survey,” IEEE Comput Graph35, 320–333 (2011).
[CrossRef]

2010 (1)

M. Simunovic, “Colour vision deficiency,” Eye24, 747–755 (2010).
[CrossRef]

2007 (3)

S. Silva, J. Madeira, and B. Santos, “There is more to color scales than meets the eye: A review on the use of color in visualization,” IEEE Infor Vis pp. 943–950 (2007).

J. A. Ross, “Colour-blindness: how to alienate a grant reviewer,” Nature445, 593–593 (2007).
[CrossRef] [PubMed]

C. Miall, “Readers see red over low-impact graphics,” Nature445, 147–147 (2007).
[CrossRef] [PubMed]

2006 (1)

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006).
[CrossRef] [PubMed]

2004 (1)

A. Light and P. Bartlein, “The end of the rainbow? color schemes for improved data graphics,” Eos T Am Geophys Un85(40):385 (2004).
[CrossRef]

2003 (2)

W. Swanson and J. Cohen, “Color vision,” Ophthalmol Clin North Am16, 179–203 (2003).
[CrossRef] [PubMed]

W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
[CrossRef]

2002 (1)

G. Kindlmann, E. Reinhard, and S. Creem, “Face-based luminance matching for perceptual colormap generation,” IEEE T Vis Comput Gr pp. 299–306 (2002).

1999 (1)

L. W. MacDonald, “Using color effectively in computer graphics,” IEEE Comp Graph19, 20–35 (1999).
[CrossRef]

1998 (1)

B. E. Rogowitz and L. A. Treinish, “Data visualization: the end of the rainbow,” IEEE Spectrum35, 52–59 (1998).
[CrossRef]

1997 (2)

H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J Opt Soc Am A14, 2647–2655 (1997).
[CrossRef]

G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans Image Process6, 901–932 (1997).
[CrossRef] [PubMed]

1996 (2)

H. Levkowitz, “Perceptual steps along color scales,” Int J Imag Syst Tech7, 97–101 (1996).
[CrossRef]

C. G. Healey, “Choosing effective colours for data visualization,” IEEE T Vis Comput Gr pp. 263–270 (1996).

1993 (1)

T. T W J Gadella, T. Jovin, and R. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,” Biophys Chem48, 221–239 (1993).
[CrossRef]

1992 (1)

H. Levkowitz and G. T. Herman, “Color scales for image data,” IEEE Comput Graph12, 72–80 (1992).
[CrossRef]

Bachmann, A. H.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006).
[CrossRef] [PubMed]

Baldi, L.

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

Bartlein, P.

A. Light and P. Bartlein, “The end of the rainbow? color schemes for improved data graphics,” Eos T Am Geophys Un85(40):385 (2004).
[CrossRef]

Becker, W.

W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
[CrossRef]

Benndorf, K.

W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
[CrossRef]

Berclaz, C.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
[CrossRef]

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

Bergman, L. D.

L. D. Bergman, B. E. Rogowitz, and L. A. Treinish, “A rule-based tool for assisting colormap selection,” IEEE T Vis Comput Gr, 1070–2385/95 (1995).

Bergmann, A.

W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
[CrossRef]

Biskup, C.

W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
[CrossRef]

Bocchio, N. L.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
[CrossRef]

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

Bolmont, T.

T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
[CrossRef] [PubMed]

Bouwens, A.

T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
[CrossRef] [PubMed]

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

Breckon, T.

C. Solomon and T. Breckon, Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab (Wiley, 2011), 1st ed.

Brettel, H.

H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J Opt Soc Am A14, 2647–2655 (1997).
[CrossRef]

Clegg, R.

T. T W J Gadella, T. Jovin, and R. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,” Biophys Chem48, 221–239 (1993).
[CrossRef]

Cohen, J.

W. Swanson and J. Cohen, “Color vision,” Ophthalmol Clin North Am16, 179–203 (2003).
[CrossRef] [PubMed]

Creem, S.

G. Kindlmann, E. Reinhard, and S. Creem, “Face-based luminance matching for perceptual colormap generation,” IEEE T Vis Comput Gr pp. 299–306 (2002).

Davison, A. C.

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

Dellagiacoma, C.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
[CrossRef]

Fraering, P. C.

T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
[CrossRef] [PubMed]

Gadella, T. T W J

T. T W J Gadella, T. Jovin, and R. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,” Biophys Chem48, 221–239 (1993).
[CrossRef]

Geissbuehler, M.

M. Geissbuehler, Z. Kadlecova, H.-A. Klok, and T. Lasser, “Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells,” Biomed Opt Express3, 2526–2536 (2012).

Geissbuehler, S.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
[CrossRef]

Gibson, M. I.

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

Goulley, J.

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

Grapin-Botton, A.

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

Hacker, D.

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

Healey, C. G.

C. G. Healey, “Choosing effective colours for data visualization,” IEEE T Vis Comput Gr pp. 263–270 (1996).

Herman, G. T.

H. Levkowitz and G. T. Herman, “Color scales for image data,” IEEE Comput Graph12, 72–80 (1992).
[CrossRef]

Hink, M. A.

W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
[CrossRef]

Jovin, T.

T. T W J Gadella, T. Jovin, and R. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,” Biophys Chem48, 221–239 (1993).
[CrossRef]

Kadlecova, Z.

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

M. Geissbuehler, Z. Kadlecova, H.-A. Klok, and T. Lasser, “Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells,” Biomed Opt Express3, 2526–2536 (2012).

Kindlmann, G.

G. Kindlmann, E. Reinhard, and S. Creem, “Face-based luminance matching for perceptual colormap generation,” IEEE T Vis Comput Gr pp. 299–306 (2002).

Klok, H.-A.

M. Geissbuehler, Z. Kadlecova, H.-A. Klok, and T. Lasser, “Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells,” Biomed Opt Express3, 2526–2536 (2012).

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

Knig, K.

W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
[CrossRef]

Lasser, T.

T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
[CrossRef] [PubMed]

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
[CrossRef]

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

M. Geissbuehler, Z. Kadlecova, H.-A. Klok, and T. Lasser, “Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells,” Biomed Opt Express3, 2526–2536 (2012).

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006).
[CrossRef] [PubMed]

Leitgeb, R. A.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006).
[CrossRef] [PubMed]

Leutenegger, M.

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
[CrossRef]

Levkowitz, H.

H. Levkowitz, “Perceptual steps along color scales,” Int J Imag Syst Tech7, 97–101 (1996).
[CrossRef]

H. Levkowitz and G. T. Herman, “Color scales for image data,” IEEE Comput Graph12, 72–80 (1992).
[CrossRef]

Light, A.

A. Light and P. Bartlein, “The end of the rainbow? color schemes for improved data graphics,” Eos T Am Geophys Un85(40):385 (2004).
[CrossRef]

MacDonald, L. W.

L. W. MacDonald, “Using color effectively in computer graphics,” IEEE Comp Graph19, 20–35 (1999).
[CrossRef]

Madeira, J.

S. Silva, B. Sousa Santos, and J. Madeira, “Using color in visualization: A survey,” IEEE Comput Graph35, 320–333 (2011).
[CrossRef]

S. Silva, J. Madeira, and B. Santos, “There is more to color scales than meets the eye: A review on the use of color in visualization,” IEEE Infor Vis pp. 943–950 (2007).

Martin-Williams, E.

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

Matasci, M.

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

Miall, C.

C. Miall, “Readers see red over low-impact graphics,” Nature445, 147–147 (2007).
[CrossRef] [PubMed]

Mollon, J. D.

H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J Opt Soc Am A14, 2647–2655 (1997).
[CrossRef]

Pache, C.

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
[CrossRef] [PubMed]

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

Rajendra, Y.

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

Reinhard, E.

G. Kindlmann, E. Reinhard, and S. Creem, “Face-based luminance matching for perceptual colormap generation,” IEEE T Vis Comput Gr pp. 299–306 (2002).

Rogowitz, B. E.

B. E. Rogowitz and L. A. Treinish, “Data visualization: the end of the rainbow,” IEEE Spectrum35, 52–59 (1998).
[CrossRef]

L. D. Bergman, B. E. Rogowitz, and L. A. Treinish, “A rule-based tool for assisting colormap selection,” IEEE T Vis Comput Gr, 1070–2385/95 (1995).

Ross, J. A.

J. A. Ross, “Colour-blindness: how to alienate a grant reviewer,” Nature445, 593–593 (2007).
[CrossRef] [PubMed]

Santos, B.

S. Silva, J. Madeira, and B. Santos, “There is more to color scales than meets the eye: A review on the use of color in visualization,” IEEE Infor Vis pp. 943–950 (2007).

Santschi, C.

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

Sharma, G.

G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans Image Process6, 901–932 (1997).
[CrossRef] [PubMed]

Silva, S.

S. Silva, B. Sousa Santos, and J. Madeira, “Using color in visualization: A survey,” IEEE Comput Graph35, 320–333 (2011).
[CrossRef]

S. Silva, J. Madeira, and B. Santos, “There is more to color scales than meets the eye: A review on the use of color in visualization,” IEEE Infor Vis pp. 943–950 (2007).

Simunovic, M.

M. Simunovic, “Colour vision deficiency,” Eye24, 747–755 (2010).
[CrossRef]

Solomon, C.

C. Solomon and T. Breckon, Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab (Wiley, 2011), 1st ed.

Sousa Santos, B.

S. Silva, B. Sousa Santos, and J. Madeira, “Using color in visualization: A survey,” IEEE Comput Graph35, 320–333 (2011).
[CrossRef]

Steinmann, L.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006).
[CrossRef] [PubMed]

Swanson, W.

W. Swanson and J. Cohen, “Color vision,” Ophthalmol Clin North Am16, 179–203 (2003).
[CrossRef] [PubMed]

Treinish, L. A.

B. E. Rogowitz and L. A. Treinish, “Data visualization: the end of the rainbow,” IEEE Spectrum35, 52–59 (1998).
[CrossRef]

L. D. Bergman, B. E. Rogowitz, and L. A. Treinish, “A rule-based tool for assisting colormap selection,” IEEE T Vis Comput Gr, 1070–2385/95 (1995).

Trussell, H. J.

G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans Image Process6, 901–932 (1997).
[CrossRef] [PubMed]

Van de Ville, D.

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

Viénot, F.

H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J Opt Soc Am A14, 2647–2655 (1997).
[CrossRef]

Villiger, M.

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
[CrossRef] [PubMed]

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006).
[CrossRef] [PubMed]

Wurm, F. M.

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

Biomed Opt Express (2)

C. Berclaz, J. Goulley, M. Villiger, C. Pache, A. Bouwens, E. Martin-Williams, D. Van de Ville, A. C. Davison, A. Grapin-Botton, and T. Lasser, “Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy,” Biomed Opt Express3, 1365–1380 (2012).

M. Geissbuehler, Z. Kadlecova, H.-A. Klok, and T. Lasser, “Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells,” Biomed Opt Express3, 2526–2536 (2012).

Biophys Chem (1)

T. T W J Gadella, T. Jovin, and R. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,” Biophys Chem48, 221–239 (1993).
[CrossRef]

Eos T Am Geophys Un (1)

A. Light and P. Bartlein, “The end of the rainbow? color schemes for improved data graphics,” Eos T Am Geophys Un85(40):385 (2004).
[CrossRef]

Eye (1)

M. Simunovic, “Colour vision deficiency,” Eye24, 747–755 (2010).
[CrossRef]

IEEE Comp Graph (1)

L. W. MacDonald, “Using color effectively in computer graphics,” IEEE Comp Graph19, 20–35 (1999).
[CrossRef]

IEEE Comput Graph (2)

H. Levkowitz and G. T. Herman, “Color scales for image data,” IEEE Comput Graph12, 72–80 (1992).
[CrossRef]

S. Silva, B. Sousa Santos, and J. Madeira, “Using color in visualization: A survey,” IEEE Comput Graph35, 320–333 (2011).
[CrossRef]

IEEE Infor Vis (1)

S. Silva, J. Madeira, and B. Santos, “There is more to color scales than meets the eye: A review on the use of color in visualization,” IEEE Infor Vis pp. 943–950 (2007).

IEEE Spectrum (1)

B. E. Rogowitz and L. A. Treinish, “Data visualization: the end of the rainbow,” IEEE Spectrum35, 52–59 (1998).
[CrossRef]

IEEE T Vis Comput Gr (2)

C. G. Healey, “Choosing effective colours for data visualization,” IEEE T Vis Comput Gr pp. 263–270 (1996).

G. Kindlmann, E. Reinhard, and S. Creem, “Face-based luminance matching for perceptual colormap generation,” IEEE T Vis Comput Gr pp. 299–306 (2002).

IEEE Trans Image Process (1)

G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans Image Process6, 901–932 (1997).
[CrossRef] [PubMed]

Int J Imag Syst Tech (1)

H. Levkowitz, “Perceptual steps along color scales,” Int J Imag Syst Tech7, 97–101 (1996).
[CrossRef]

J Neurosci (1)

T. Bolmont, A. Bouwens, M. Villiger, C. Pache, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral β-Amyloidosis with extended-focus optical coherence microscopy,” J Neurosci32, 14548–14556 (2012).
[CrossRef] [PubMed]

J Opt Soc Am A (1)

H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J Opt Soc Am A14, 2647–2655 (1997).
[CrossRef]

Macromol Biosci (1)

Z. Kadlecova, Y. Rajendra, M. Matasci, D. Hacker, L. Baldi, F. M. Wurm, and H.-A. Klok, “Hyperbranched polylysine: A versatile, biodegradable yransfection sgent for the production of tecombinant proteins by transient gene expression and the transfection of primary cells,” Macromol Biosci12, 794–804 (2012).
[CrossRef] [PubMed]

Microsc Res Techniq (1)

W. Becker, A. Bergmann, M. A. Hink, K. Knig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc Res Techniq63, 58–66 (2003).
[CrossRef]

Nature (2)

J. A. Ross, “Colour-blindness: how to alienate a grant reviewer,” Nature445, 593–593 (2007).
[CrossRef] [PubMed]

C. Miall, “Readers see red over low-impact graphics,” Nature445, 147–147 (2007).
[CrossRef] [PubMed]

Ophthalmol Clin North Am (1)

W. Swanson and J. Cohen, “Color vision,” Ophthalmol Clin North Am16, 179–203 (2003).
[CrossRef] [PubMed]

Opt Express (1)

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt Express20, 21385–21399 (2012).
[CrossRef] [PubMed]

Opt Lett (1)

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt Lett31, 2450–2452 (2006).
[CrossRef] [PubMed]

Optical Nanoscopy (1)

S. Geissbuehler, N. L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, and T. Lasser, “Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI),” Optical Nanoscopy1, 4 (2012).
[CrossRef]

Other (5)

L. D. Bergman, B. E. Rogowitz, and L. A. Treinish, “A rule-based tool for assisting colormap selection,” IEEE T Vis Comput Gr, 1070–2385/95 (1995).

B. Dougherty and A. Wade, “Vischeck,” http://www.vischeck.com/ (2006).

National Institutes of Health, “ImageJ,” http://rsb.info.nih.gov/ij/ (2012).

C. Solomon and T. Breckon, Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab (Wiley, 2011), 1st ed.

M. Okabe and K. Ito, “Color Universal Design (CUD): How to make figures and presentations that are friendly to colorblind people,” http://jfly.iam.u-tokyo.ac.jp/color/ (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Color maps for the display of univariate data and their corresponding conversion to black&white, CMYK color space (as used by color printers) as well as perception simulations for deuteranope and protanope perception. (a) Hot, (b) Fire and (c) the novel Morgenstemning. (d) Conversion to gray-scale of these color maps according to Eq. (1) and (e) according to Eq. (2). The CMYK conversion is best seen on screen.

Fig. 2
Fig. 2

Example of univariate data shown with different color maps. Image showing islets of Langerhans in a fixed pancreas measured with extended focus optical coherence microscopy (xfOCM) [18]. (a) Display using “hot” as a color map, (b) Morgenstemning with their corresponding simulated appearance for persons with color perception deficiency. (c) a normal gray-scale map for comparison.

Fig. 3
Fig. 3

Image with two color coded fluorescent channels. HeLa cells were labeled using conventional immunocytochemistry approaches. The microtubuli were marked indirectly with Alexa 568 (Channel 1) and, while a protein present in the mitochondria was labeled with Alexa 488 (Channel 2). Overlay of the channels with (a) ch1: red, ch2: green, (b) ch1: magenta, ch2: green and (c) ch1: orange, ch2: blue. The images on the right side, show simulations of how these images appear to persons with color perception deficiencies.

Fig. 4
Fig. 4

Color maps for the display of two linked channels and their corresponding conversion to black&white, CMYK color space (as used by color printers) as well as perception simulations for deuteranope and protanope perception. (a) HSV, (b) Jet, (c) Kindlmann Isoluminant Map [17], (d) Conversion to gray-scale of color maps (a–c) according to Eq. (1) and (e) according to Eq. (2), (f) Rainbow, (g) Isolum, (h) Ametrine, (i, j) conversion to gray-scale of color maps (f–h). The CMYK conversion is best seen on screen.

Fig. 5
Fig. 5

Example of data of two linked channels shown with two different color maps. Imaging cerebral vasculature inside a mouse brain using phase variance analysis on an xfOCM setup [24, 25]. The images show maximum intensity projections along z and y respectively with a color-encoded z-position for a (a) rainbow-like color map and (b) isolum color map with their corresponding simulated appearance for persons with red-green color perception deficiency. Scalebars: 50 μm. The Fig. is best seen on screen.

Fig. 6
Fig. 6

Color-coded molecular brightness (in arbitrary units) of HeLa cells with Alexa647-labelled microtubules overlaid with the 5th order balanced cumulant measured by bSOFI [26]. Color encoding by a (a) rainbow-like color map and (b) isolum color map. The Fig. is best seen on screen.

Fig. 7
Fig. 7

Color-coded triplet lifetime image of adherent CHO-cells with TMR-labeled hyperbranched poly-Lysine [27, 28]. Color encoding by a (a) rainbow-like color map and (b) ametrine color map and (c) overlay of (b) with the phase-contrast channel. The cells have been incubated for 15 min with TMR-labeled hyperbranched poly-Lysine HBPL 80kDa. The image has been taken 43 min after washing the cells with ProCHO5 at 37° C. The “A” arrow marks the triplet lifetimes leading to a grey-color which for color deficient perception results in an ambiguity compared to the grey-scale encoded phase-contrast image. The Fig. is best seen on screen.

Tables (1)

Tables Icon

Table 1 Guideline how to display your image data.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Gray = 0.2989 Red + 0.5870 Green + 0.1140 Blue
Gray = ( Red γ + Green γ + Blue γ ) 1 / γ
[ R red-green G red-green B red-green ] = [ 1 0 0 1 0 0 ] [ C h 1 C h 2 ]
[ R magenta-green G magenta-green B magenta-green ] = [ 1 0 0 1 1 0 ] [ C h 1 C h 2 ]
[ R orange-blue G orange-blue B orange-blue ] = [ 1 0 0.5 0.5 0 1 ] [ C h 1 C h 2 ]

Metrics