Abstract

A method for precise multi-spot parallel ultrafast laser material structuring is presented based on multi-beam interference generated by dynamic spatial phase engineering. A Spatial Light Modulator (SLM) and digitally programming of phase masks are used to accomplish the function of a multi-facet pyramid lens, so that the laser beam can be spatially modulated to create beam multiplexing and desired two-dimensional (2D) multi-beam interference patterns. Various periodic microstructures on metallic alloy surfaces are fabricated with this technique. A method of preparing extended scale periodic microstructures by loading dynamic time-varying phases is also demonstrated. Scanning electron microscopy (SEM) reveals the period and morphology of the microstructures created using this technique. The asymmetry of interference modes generated from the beams with asymmetric wave vector distributions is equally explored. The flexibility of programming the period of the microstructures is demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater.8(6), 580–584 (2006).
    [CrossRef]
  2. S. H. Kim, I. B. Sohn, and S. Jeong, “Parallel ripple formation during femtosecond laser grooving of ceramic,” Appl. Phys., A Mater. Sci. Process.103(4), 1053–1057 (2011).
    [CrossRef]
  3. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
    [CrossRef] [PubMed]
  4. Y. H. Han and S. L. Qu, “Controllable fabrication of periodic hexagon lattice on glass by interference of three replicas split from single femtosecond laser pulse,” Laser Phys.19(5), 1067–1071 (2009).
    [CrossRef]
  5. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett.34(12), 1783–1785 (2009).
    [CrossRef] [PubMed]
  6. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000).
    [CrossRef]
  7. S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005).
    [CrossRef]
  8. J. H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
    [CrossRef]
  9. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  10. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett.26(21), 1642–1644 (2001).
    [CrossRef] [PubMed]
  11. X. Jia, T. Q. Jia, L. E. Ding, P. X. Xiong, L. Deng, Z. R. Sun, Z. G. Wang, J. R. Qiu, and Z. Z. Xu, “Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams,” Opt. Lett.34(6), 788–790 (2009).
    [CrossRef] [PubMed]
  12. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006).
    [CrossRef] [PubMed]
  13. J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002).
    [CrossRef]
  14. Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
    [CrossRef]
  15. R. C. Gauthier and A. Ivanov, “Production of quasi-crystal template patterns using a dual beam multiple exposure technique,” Opt. Express12(6), 990–1003 (2004).
    [CrossRef] [PubMed]
  16. N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express14(22), 10746–10752 (2006).
    [CrossRef] [PubMed]
  17. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001).
    [CrossRef]
  18. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003).
    [CrossRef]
  19. Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
    [CrossRef]
  20. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
    [CrossRef] [PubMed]
  21. P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication,” Opt. Lett.36(12), 2302–2304 (2011).
    [CrossRef] [PubMed]
  22. M. Lei, B. L. Yao, and R. A. Rupp, “Structuring by multi-beam interference using symmetric pyramids,” Opt. Express14(12), 5803–5811 (2006).
    [CrossRef] [PubMed]
  23. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express16(20), 15942–15948 (2008).
    [CrossRef] [PubMed]
  24. M. J. Escuti and G. P. Crawford, “Holographic photonic crystals,” Opt. Eng.43(9), 1973–1987 (2004).
    [CrossRef]
  25. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
    [CrossRef]

2012

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

2011

S. H. Kim, I. B. Sohn, and S. Jeong, “Parallel ripple formation during femtosecond laser grooving of ceramic,” Appl. Phys., A Mater. Sci. Process.103(4), 1053–1057 (2011).
[CrossRef]

P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication,” Opt. Lett.36(12), 2302–2304 (2011).
[CrossRef] [PubMed]

2009

2008

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express16(20), 15942–15948 (2008).
[CrossRef] [PubMed]

2006

2005

S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005).
[CrossRef]

2004

2003

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
[CrossRef] [PubMed]

J. H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003).
[CrossRef]

2002

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002).
[CrossRef]

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

2001

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001).
[CrossRef]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett.26(21), 1642–1644 (2001).
[CrossRef] [PubMed]

2000

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000).
[CrossRef]

Aizenberg, J.

S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005).
[CrossRef]

Booth, M. J.

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Chichkov, B. N.

Clark, R. L.

Clasen, R.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater.8(6), 580–584 (2006).
[CrossRef]

Cole, D. G.

Crawford, G. P.

M. J. Escuti and G. P. Crawford, “Holographic photonic crystals,” Opt. Eng.43(9), 1973–1987 (2004).
[CrossRef]

Cronauer, C.

de Boor, J.

Dearden, G.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Deng, L.

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Ding, L. E.

Domann, G.

Edwardson, S. P.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Egbert, A.

Escuti, M. J.

M. J. Escuti and G. P. Crawford, “Holographic photonic crystals,” Opt. Eng.43(9), 1973–1987 (2004).
[CrossRef]

Ford, J.

S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005).
[CrossRef]

Fröhlich, L.

Gauthier, R. C.

Geyer, N.

Gösele, U.

Han, Y. H.

Y. H. Han and S. L. Qu, “Controllable fabrication of periodic hexagon lattice on glass by interference of three replicas split from single femtosecond laser pulse,” Laser Phys.19(5), 1067–1071 (2009).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Hasegawa, S.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Hayasaki, Y.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Hirano, M.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000).
[CrossRef]

Hirao, K.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002).
[CrossRef]

Hosono, H.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000).
[CrossRef]

Houbertz, R.

Hsu, C. C.

Huang, Q.

S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005).
[CrossRef]

Huang, Y. Y.

Itoh, K.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

Ivanov, A.

Jenness, N. J.

Jeong, S.

S. H. Kim, I. B. Sohn, and S. Jeong, “Parallel ripple formation during femtosecond laser grooving of ceramic,” Appl. Phys., A Mater. Sci. Process.103(4), 1053–1057 (2011).
[CrossRef]

Jia, T. Q.

Jia, X.

Jiang, Y.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

Johannes, M. S.

Juodkazis, S.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001).
[CrossRef]

Kawamura, K.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000).
[CrossRef]

Kikuta, H.

Kim, S. H.

S. H. Kim, I. B. Sohn, and S. Jeong, “Parallel ripple formation during femtosecond laser grooving of ceramic,” Appl. Phys., A Mater. Sci. Process.103(4), 1053–1057 (2011).
[CrossRef]

Kintaka, K.

Klein-Wiele, J. H.

J. H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

Kondo, T.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001).
[CrossRef]

Kuang, Z.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Lai, N. D.

Lasagni, A.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater.8(6), 580–584 (2006).
[CrossRef]

Leach, J.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Lei, M.

Li, Y.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

Lin, J. H.

Matsuo, S.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001).
[CrossRef]

Misawa, H.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001).
[CrossRef]

Mizeikis, V.

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003).
[CrossRef]

Mizutani, A.

Mücklich, F.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater.8(6), 580–584 (2006).
[CrossRef]

Nakano, H.

Nejati, M. R.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater.8(6), 580–584 (2006).
[CrossRef]

Nishida, N.

Nishii, J.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett.26(21), 1642–1644 (2001).
[CrossRef] [PubMed]

Nishitani, M.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Ogawa, T.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000).
[CrossRef]

Ostendorf, A.

Padgett, M.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Padgett, M. J.

Perrie, W.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Popall, M.

Qiu, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002).
[CrossRef]

Qiu, J. R.

Qu, S. L.

Y. H. Han and S. L. Qu, “Controllable fabrication of periodic hexagon lattice on glass by interference of three replicas split from single femtosecond laser pulse,” Laser Phys.19(5), 1067–1071 (2009).
[CrossRef]

Ruengruglikit, C.

S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005).
[CrossRef]

Rupp, R. A.

Salter, P. S.

Sarukura, N.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000).
[CrossRef]

Schmidt, V.

Schulz, J.

Serbin, J.

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Sharp, M.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Shen, Y.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002).
[CrossRef]

Shinagawa, T.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

Si, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002).
[CrossRef]

Simon, P.

J. H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

Sohn, I. B.

S. H. Kim, I. B. Sohn, and S. Jeong, “Parallel ripple formation during femtosecond laser grooving of ceramic,” Appl. Phys., A Mater. Sci. Process.103(4), 1053–1057 (2011).
[CrossRef]

Sun, Z. R.

Suzuki, D.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Takahashi, H.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Takita, A.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Wang, Z. G.

Watanabe, W.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

Watkins, K. G.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Wulff, K. D.

Xiong, P. X.

Xu, Z. Z.

Yamada, K.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

Yamamoto, H.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Yang, S.

S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005).
[CrossRef]

Yao, B. L.

Zhai, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002).
[CrossRef]

Adv. Eng. Mater.

A. Lasagni, F. Mücklich, M. R. Nejati, and R. Clasen, “Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater.8(6), 580–584 (2006).
[CrossRef]

Appl. Phys. B

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B71(1), 119–121 (2000).
[CrossRef]

Appl. Phys. Lett.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett.80(3), 359–361 (2002).
[CrossRef]

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda–lime glass with femtosecond laser pulses,” Appl. Phys. Lett.80(9), 1508–1510 (2002).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003).
[CrossRef]

J. H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

S. H. Kim, I. B. Sohn, and S. Jeong, “Parallel ripple formation during femtosecond laser grooving of ceramic,” Appl. Phys., A Mater. Sci. Process.103(4), 1053–1057 (2011).
[CrossRef]

Appl. Surf. Sci.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

J. Mater. Chem.

S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, and J. Aizenberg, “Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft biomimetic microlens arrays,” J. Mater. Chem.15(39), 4200–4202 (2005).
[CrossRef]

Laser Phys.

Y. H. Han and S. L. Qu, “Controllable fabrication of periodic hexagon lattice on glass by interference of three replicas split from single femtosecond laser pulse,” Laser Phys.19(5), 1067–1071 (2009).
[CrossRef]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Opt. Eng.

M. J. Escuti and G. P. Crawford, “Holographic photonic crystals,” Opt. Eng.43(9), 1973–1987 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Microscope image of the helix structure fabricated by dynamically inclined and rotating phase via a SLM. The laser writing power is 8 mW, rotation speed is 3°/s, and the focal length of focusing lens is 50 mm. Prism angle changes 0.2° per round.

Fig. 2
Fig. 2

Geometrical representation of the phase masks of several multi-facet pyramid lenses and the calculated intensity distribution of the interference patterns formed by multi-facet pyramid beam splitting. Phase masks of the (a) 3, (b) 4, (c) 25 and (d) 50 facets symmetric pyramid lenses (top) and the respective 2D intensity distributions of the interference patterns (bottom) for (e) 3, (f) 4, (g) 25 and (h) 50 facets symmetric pyramid lenses. The calculation parameters of the multi-facet pyramid lens are n=1.5 and base angle α=2° . All the laser beams have the same original phase fronts and the wavelength of the laser radiation is 800nm. The interference pattern formed by a high number facet pyramid phase evolves gradually into a Bessel beam.

Fig. 3
Fig. 3

Experimental setup for the multi-beam interference system. L1 and L2 are imaging lenses (ƒ = 200 mm) in a 4ƒ configuration. An objective lens was used to focus the formed spots onto the sample surface and via the dichroic mirror the CCD camera can monitor the sample surface in real-time. Different interference patterns were formed by changing the calculated phase masks.

Fig. 4
Fig. 4

Optical images of the results of experimental multi-beam interferences for (a) 3 beams, (b) 4 beams, (c) 5 beams, (d) 7 beams, (e) 9 beams, (f) 15 beams, (g) 25 beams, (h) 40 beams and (i) 50 beams. The phase masks used in the experiment are calculated according to actual symmetric pyramid lenses with the parameters of n=1.5 , and α=2° . The images were captured by a CCD equipped with a 10 × objective; the scale bar is 100 μm.

Fig. 5
Fig. 5

SEM images of the structures fabricated by (a) three-beam and (b) four-beam interference of fs pulses, the used phase masks are calculated according to the 3-facet pyramid lens and 4-facet pyramid lens with the base angle of 2°. The power of the laser is 20 mW and the exposure time is 10 s.

Fig. 6
Fig. 6

Depiction of the process of the large scale microstructure fabrication by dynamic phase variations. (a) Phase shift patterns and (b) microscope image of the large scale concave structures fabricated by dynamic phase shift method. The power of the laser is 20 mW and the exposure time is 10 s.

Fig. 7
Fig. 7

Comparison of the symmetrical and asymmetrical interference modes and corresponding optical patterns. Two-beam interference pattern of (a) period-fixed grating structure formed by two beam symmetric interference and (b) period-variable grating structure formed by asymmetric interference with half prism half parabolic masks. Three-beam interference pattern for (c) regular hexagon structure formed by symmetric interference in three equivalent facet pyramid lens and (d) irregular hexagon structure formed by asymmetric interference. The inset depicts the distribution of the wave vectors.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ(n1)α,
δ=fθ,
d 3beam =(2/ 3 )λ/(2sinθ)=λ/( 3 sinθ)
d 4beam = 2 λ/(2sinθ)=λ/( 2 sinθ),
Phas e total =mod(Phas e pyramid +Phas e prism ,2π).

Metrics