Abstract

A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
  2. J. J. Arthur, L. J. Kramer, and R. E. Bailey, “Flight test comparison between enhanced vision (FLIR) and synthetic vision systems,” (SPIE-INT SOC Optical Engineering, BELLINGHAM, 2005), pp. 25–36.
  3. R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process.14(3), 294–307 (2005).
  4. J. P. Pluim, J. B. Maintz, and M. A. Viergever, “Mutual-information-based registration of medical images: a survey,” IEEE Trans. Med. Imaging22(8), 986–1004 (2003).
  5. H. Luan, F. Qi, Z. Xue, L. Chen, and D. Shen, “Multimodality image registration by maximization of quantitative-qualitative measure of mutual information,” Pattern Recognit.41(1), 285–298 (2008).
  6. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).
  7. A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient,” IEEE Trans. Image Process.12(12), 1495–1511 (2003).
  8. J. P. Heather and M. I. Smith, “Multimodal image registration with applications to image fusion,” 2005 7th International Conference on Information Fusion (FUSION), Vols 1 and 2, 372–379 (2005).
  9. M. Irani and P. Anandan, “Robust multi-sensor image alignment,” Sixth International Conference on Computer Vision, 959–966 (1998).
  10. Z. H. Zhang, C. H. Pan, and S. D. Ma, “An automatic method of coarse registration between multi-source satellite images,” Proceedings of the 2004 Intelligent Sensors, Sensor Networks & Information Processing Conference, 205–209 (2004).
  11. M. A. Ali and D. A. Clausi, “Automatic registration of SAR and visible band remote sensing images,” 2002 IEEE International Geoscience and Remote Sensing Symposium. 24th Canadian Symposium on Remote Sensing. Proceedings (Cat. No.02CH37380), 1331–1333 (2002).
  12. H. Li, B. S. Manjunath, and S. K. Mitra, “A contour-based approach to multisensor image registration,” IEEE Trans. Image Process.4(3), 320–334 (1995).
  13. S. Dawn, V. Saxena, and B. Sharma, “Remote Sensing Image Registration Techniques: A Survey,” Image and Signal Processing. Proceedings 4th International Conference, ICISP 2010, 103–112 (2010).
  14. Z. L. Song and J. P. Zhang, “Remote Sensing Image Registration Based on Retrofitted SURF Algorithm and Trajectories Generated From Lissajous Figures,” IEEE Geosci. Remote Sens. Lett.7(3), 491–495 (2010).
  15. Z. L. Song, S. Li, and T. F. George, “Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories,” Opt. Express18(2), 513–522 (2010).
  16. N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, “Shape retrieval using triangle-area representation and dynamic space warping,” Pattern Recognit.40(7), 1911–1920 (2007).
  17. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis.60(2), 91–110 (2004).
  18. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis. Image Underst.110(3), 346–359 (2008).
  19. J. L. Mundy and A. Zisserman, Geometric Invariance in Computer Vision (the MIT Press, 1992).
  20. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.8(6), 679–698 (1986).
  21. F. Mokhtarian and R. Suomela, “Robust image corner detection through curvature scale space,” IEEE Trans. Pattern Anal20(12), 1376–1381 (1998).
  22. X. C. He and N. H. C. Yung, “Corner detector based on global and local curvature properties,” Opt. Eng.47, 057008 (2008).
  23. M. A. Fischler and R. C. Bolles, “Random Sample Consensus - A Paradigm For Model-Fitting With Applications To Image-Analysis And Automated Cartography,” Commun. ACM24, 381–395 (1981).
  24. K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell.27(10), 1615–1630 (2005).

2010 (2)

Z. L. Song and J. P. Zhang, “Remote Sensing Image Registration Based on Retrofitted SURF Algorithm and Trajectories Generated From Lissajous Figures,” IEEE Geosci. Remote Sens. Lett.7(3), 491–495 (2010).

Z. L. Song, S. Li, and T. F. George, “Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories,” Opt. Express18(2), 513–522 (2010).

2008 (3)

H. Luan, F. Qi, Z. Xue, L. Chen, and D. Shen, “Multimodality image registration by maximization of quantitative-qualitative measure of mutual information,” Pattern Recognit.41(1), 285–298 (2008).

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis. Image Underst.110(3), 346–359 (2008).

X. C. He and N. H. C. Yung, “Corner detector based on global and local curvature properties,” Opt. Eng.47, 057008 (2008).

2007 (1)

N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, “Shape retrieval using triangle-area representation and dynamic space warping,” Pattern Recognit.40(7), 1911–1920 (2007).

2005 (2)

R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process.14(3), 294–307 (2005).

K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell.27(10), 1615–1630 (2005).

2004 (1)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis.60(2), 91–110 (2004).

2003 (3)

J. P. Pluim, J. B. Maintz, and M. A. Viergever, “Mutual-information-based registration of medical images: a survey,” IEEE Trans. Med. Imaging22(8), 986–1004 (2003).

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).

A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient,” IEEE Trans. Image Process.12(12), 1495–1511 (2003).

1998 (1)

F. Mokhtarian and R. Suomela, “Robust image corner detection through curvature scale space,” IEEE Trans. Pattern Anal20(12), 1376–1381 (1998).

1997 (1)

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).

1995 (1)

H. Li, B. S. Manjunath, and S. K. Mitra, “A contour-based approach to multisensor image registration,” IEEE Trans. Image Process.4(3), 320–334 (1995).

1986 (1)

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.8(6), 679–698 (1986).

1981 (1)

M. A. Fischler and R. C. Bolles, “Random Sample Consensus - A Paradigm For Model-Fitting With Applications To Image-Analysis And Automated Cartography,” Commun. ACM24, 381–395 (1981).

Alajlan, N.

N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, “Shape retrieval using triangle-area representation and dynamic space warping,” Pattern Recognit.40(7), 1911–1920 (2007).

Al-Kofahi, O.

R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process.14(3), 294–307 (2005).

Anandan, P.

M. Irani and P. Anandan, “Robust multi-sensor image alignment,” Sixth International Conference on Computer Vision, 959–966 (1998).

Andra, S.

R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process.14(3), 294–307 (2005).

Bay, H.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis. Image Underst.110(3), 346–359 (2008).

Bolles, R. C.

M. A. Fischler and R. C. Bolles, “Random Sample Consensus - A Paradigm For Model-Fitting With Applications To Image-Analysis And Automated Cartography,” Commun. ACM24, 381–395 (1981).

Canny, J.

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.8(6), 679–698 (1986).

Chen, L.

H. Luan, F. Qi, Z. Xue, L. Chen, and D. Shen, “Multimodality image registration by maximization of quantitative-qualitative measure of mutual information,” Pattern Recognit.41(1), 285–298 (2008).

Cole-Rhodes, A. A.

A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient,” IEEE Trans. Image Process.12(12), 1495–1511 (2003).

Collignon, A.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).

El Rube, I.

N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, “Shape retrieval using triangle-area representation and dynamic space warping,” Pattern Recognit.40(7), 1911–1920 (2007).

Ess, A.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis. Image Underst.110(3), 346–359 (2008).

Fischler, M. A.

M. A. Fischler and R. C. Bolles, “Random Sample Consensus - A Paradigm For Model-Fitting With Applications To Image-Analysis And Automated Cartography,” Commun. ACM24, 381–395 (1981).

Flusser, J.

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).

Freeman, G.

N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, “Shape retrieval using triangle-area representation and dynamic space warping,” Pattern Recognit.40(7), 1911–1920 (2007).

George, T. F.

He, X. C.

X. C. He and N. H. C. Yung, “Corner detector based on global and local curvature properties,” Opt. Eng.47, 057008 (2008).

Irani, M.

M. Irani and P. Anandan, “Robust multi-sensor image alignment,” Sixth International Conference on Computer Vision, 959–966 (1998).

Johnson, K. L.

A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient,” IEEE Trans. Image Process.12(12), 1495–1511 (2003).

Kamel, M. S.

N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, “Shape retrieval using triangle-area representation and dynamic space warping,” Pattern Recognit.40(7), 1911–1920 (2007).

LeMoigne, J.

A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient,” IEEE Trans. Image Process.12(12), 1495–1511 (2003).

Li, H.

H. Li, B. S. Manjunath, and S. K. Mitra, “A contour-based approach to multisensor image registration,” IEEE Trans. Image Process.4(3), 320–334 (1995).

Li, S.

Lowe, D. G.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis.60(2), 91–110 (2004).

Luan, H.

H. Luan, F. Qi, Z. Xue, L. Chen, and D. Shen, “Multimodality image registration by maximization of quantitative-qualitative measure of mutual information,” Pattern Recognit.41(1), 285–298 (2008).

Maes, F.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).

Maintz, J. B.

J. P. Pluim, J. B. Maintz, and M. A. Viergever, “Mutual-information-based registration of medical images: a survey,” IEEE Trans. Med. Imaging22(8), 986–1004 (2003).

Manjunath, B. S.

H. Li, B. S. Manjunath, and S. K. Mitra, “A contour-based approach to multisensor image registration,” IEEE Trans. Image Process.4(3), 320–334 (1995).

Marchal, G.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).

Mikolajczyk, K.

K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell.27(10), 1615–1630 (2005).

Mitra, S. K.

H. Li, B. S. Manjunath, and S. K. Mitra, “A contour-based approach to multisensor image registration,” IEEE Trans. Image Process.4(3), 320–334 (1995).

Mokhtarian, F.

F. Mokhtarian and R. Suomela, “Robust image corner detection through curvature scale space,” IEEE Trans. Pattern Anal20(12), 1376–1381 (1998).

Pluim, J. P.

J. P. Pluim, J. B. Maintz, and M. A. Viergever, “Mutual-information-based registration of medical images: a survey,” IEEE Trans. Med. Imaging22(8), 986–1004 (2003).

Qi, F.

H. Luan, F. Qi, Z. Xue, L. Chen, and D. Shen, “Multimodality image registration by maximization of quantitative-qualitative measure of mutual information,” Pattern Recognit.41(1), 285–298 (2008).

Radke, R. J.

R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process.14(3), 294–307 (2005).

Roysam, B.

R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process.14(3), 294–307 (2005).

Schmid, C.

K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell.27(10), 1615–1630 (2005).

Shen, D.

H. Luan, F. Qi, Z. Xue, L. Chen, and D. Shen, “Multimodality image registration by maximization of quantitative-qualitative measure of mutual information,” Pattern Recognit.41(1), 285–298 (2008).

Song, Z. L.

Z. L. Song and J. P. Zhang, “Remote Sensing Image Registration Based on Retrofitted SURF Algorithm and Trajectories Generated From Lissajous Figures,” IEEE Geosci. Remote Sens. Lett.7(3), 491–495 (2010).

Z. L. Song, S. Li, and T. F. George, “Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories,” Opt. Express18(2), 513–522 (2010).

Suetens, P.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).

Suomela, R.

F. Mokhtarian and R. Suomela, “Robust image corner detection through curvature scale space,” IEEE Trans. Pattern Anal20(12), 1376–1381 (1998).

Tuytelaars, T.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis. Image Underst.110(3), 346–359 (2008).

Van Gool, L.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis. Image Underst.110(3), 346–359 (2008).

Vandermeulen, D.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).

Viergever, M. A.

J. P. Pluim, J. B. Maintz, and M. A. Viergever, “Mutual-information-based registration of medical images: a survey,” IEEE Trans. Med. Imaging22(8), 986–1004 (2003).

Xue, Z.

H. Luan, F. Qi, Z. Xue, L. Chen, and D. Shen, “Multimodality image registration by maximization of quantitative-qualitative measure of mutual information,” Pattern Recognit.41(1), 285–298 (2008).

Yung, N. H. C.

X. C. He and N. H. C. Yung, “Corner detector based on global and local curvature properties,” Opt. Eng.47, 057008 (2008).

Zavorin, I.

A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient,” IEEE Trans. Image Process.12(12), 1495–1511 (2003).

Zhang, J. P.

Z. L. Song and J. P. Zhang, “Remote Sensing Image Registration Based on Retrofitted SURF Algorithm and Trajectories Generated From Lissajous Figures,” IEEE Geosci. Remote Sens. Lett.7(3), 491–495 (2010).

Zitova, B.

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).

Commun. ACM (1)

M. A. Fischler and R. C. Bolles, “Random Sample Consensus - A Paradigm For Model-Fitting With Applications To Image-Analysis And Automated Cartography,” Commun. ACM24, 381–395 (1981).

Comput. Vis. Image Underst. (1)

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis. Image Underst.110(3), 346–359 (2008).

IEEE Geosci. Remote Sens. Lett. (1)

Z. L. Song and J. P. Zhang, “Remote Sensing Image Registration Based on Retrofitted SURF Algorithm and Trajectories Generated From Lissajous Figures,” IEEE Geosci. Remote Sens. Lett.7(3), 491–495 (2010).

IEEE Trans. Image Process. (3)

H. Li, B. S. Manjunath, and S. K. Mitra, “A contour-based approach to multisensor image registration,” IEEE Trans. Image Process.4(3), 320–334 (1995).

R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process.14(3), 294–307 (2005).

A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient,” IEEE Trans. Image Process.12(12), 1495–1511 (2003).

IEEE Trans. Med. Imaging (2)

J. P. Pluim, J. B. Maintz, and M. A. Viergever, “Mutual-information-based registration of medical images: a survey,” IEEE Trans. Med. Imaging22(8), 986–1004 (2003).

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).

IEEE Trans. Pattern Anal (1)

F. Mokhtarian and R. Suomela, “Robust image corner detection through curvature scale space,” IEEE Trans. Pattern Anal20(12), 1376–1381 (1998).

IEEE Trans. Pattern Anal. Mach. Intell. (2)

K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell.27(10), 1615–1630 (2005).

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.8(6), 679–698 (1986).

Image Vis. Comput. (1)

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).

Int. J. Comput. Vis. (1)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis.60(2), 91–110 (2004).

Opt. Eng. (1)

X. C. He and N. H. C. Yung, “Corner detector based on global and local curvature properties,” Opt. Eng.47, 057008 (2008).

Opt. Express (1)

Pattern Recognit. (2)

N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, “Shape retrieval using triangle-area representation and dynamic space warping,” Pattern Recognit.40(7), 1911–1920 (2007).

H. Luan, F. Qi, Z. Xue, L. Chen, and D. Shen, “Multimodality image registration by maximization of quantitative-qualitative measure of mutual information,” Pattern Recognit.41(1), 285–298 (2008).

Other (7)

J. J. Arthur, L. J. Kramer, and R. E. Bailey, “Flight test comparison between enhanced vision (FLIR) and synthetic vision systems,” (SPIE-INT SOC Optical Engineering, BELLINGHAM, 2005), pp. 25–36.

J. P. Heather and M. I. Smith, “Multimodal image registration with applications to image fusion,” 2005 7th International Conference on Information Fusion (FUSION), Vols 1 and 2, 372–379 (2005).

M. Irani and P. Anandan, “Robust multi-sensor image alignment,” Sixth International Conference on Computer Vision, 959–966 (1998).

Z. H. Zhang, C. H. Pan, and S. D. Ma, “An automatic method of coarse registration between multi-source satellite images,” Proceedings of the 2004 Intelligent Sensors, Sensor Networks & Information Processing Conference, 205–209 (2004).

M. A. Ali and D. A. Clausi, “Automatic registration of SAR and visible band remote sensing images,” 2002 IEEE International Geoscience and Remote Sensing Symposium. 24th Canadian Symposium on Remote Sensing. Proceedings (Cat. No.02CH37380), 1331–1333 (2002).

S. Dawn, V. Saxena, and B. Sharma, “Remote Sensing Image Registration Techniques: A Survey,” Image and Signal Processing. Proceedings 4th International Conference, ICISP 2010, 103–112 (2010).

J. L. Mundy and A. Zisserman, Geometric Invariance in Computer Vision (the MIT Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The framework of the proposed method.

Fig. 2
Fig. 2

(a) An open contour. (b) A closed contour.

Fig. 3
Fig. 3

An example of five pairs of corresponding corners between the reference and sensed images.

Fig. 4
Fig. 4

Accuracy rates and repetition rates of Algorithm 2 with different threshold σ.

Fig. 5
Fig. 5

Test images for robustness validation experiment.

Fig. 6
Fig. 6

The corresponding pairs in the matched results by the proposed method for each test set.

Fig. 7
Fig. 7

Test Set 4. (a) Reference image. (b) Sensed image.

Fig. 8
Fig. 8

Test Set 5. (a) Reference image. (b) Sensed image.

Fig. 9
Fig. 9

Test Set 6. (a) Reference image. (b) Sensed image.

Fig. 10
Fig. 10

Aligned images by the proposed method. (a) Test set 1. (b) Test set 2. (c) Test set 3.

Tables (2)

Tables Icon

Table 1 Feature Matching Results of Test Sets 1-3 by the Proposed Algorithm

Tables Icon

Table 2 Performance Comparison of SIFT, SURF and the Proposed Algorithms

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

g i ={ p 1 i , p 2 i , p 3 i , p 4 i , p 5 i }
c j ={ p 1 j , p 2 j ,..., p n j j }
C={ c 1 , c 2 ,..., c N c }
{ IN V 1 ( p 1 , p 2 , p 3 , p 4 , p 5 )= det( m 431 )det( m 521 ) det( m 421 )det( m 531 ) IN V 2 ( p 1 , p 2 , p 3 , p 4 , p 5 )= det( m 421 )det( m 531 ) det( m 432 )det( m 521 )
IN V i ( p 1 , p 2 , p 3 , p 4 , p 5 )=IN V i ( p ¯ 1 , p ¯ 2 , p ¯ 3 , p ¯ 4 , p ¯ 5 ),i=1,2
des(g)=[ IN V 1 ( p a , p b , p c , p d , p e ) IN V 2 ( p a , p b , p c , p d , p e ) IN V 1 ( p b , p c , p d , p e , p a ) IN V 2 ( p b , p c , p d , p e , p a ) IN V 1 ( p c , p d , p e , p a , p b ) IN V 2 ( p c , p d , p e , p a , p b ) IN V 1 ( p d , p e , p a , p b , p c ) IN V 2 ( p d , p e , p a , p b , p c ) IN V 1 ( p e , p a , p b , p c , p d ) IN V 2 ( p e , p a , p b , p c , p d ) ]
D des( g 1 ),des( g 2 ) = i=1 10 ( a i b i ) 2 a i 2 + b i 2
accuracyrate= #correspondingpairsinthe output #matchesinthe output
repetitionrate= #correspondingpairsinoutput #correspondingpairsininput
{ x ¯ = ax+by+c gx+hy+1 +αRcos(2πβ) y ¯ == dx+ey+f gx+hy+1 +αRsin(2πβ)
H=[ a b c d e f g h 1 ]

Metrics