Abstract

We numerically investigate the acceleration and bunch compression capabilities of 20 mJ, 0.6 THz-centered coherent terahertz pulses in optimized metallic dielectric-loaded cylindrical waveguides. In particular, we theoretically demonstrate the acceleration of 1.6 pC and 16 pC electron bunches from 1 MeV to 10 MeV over an interaction distance of 20mm, the compression of a 1.6 pC 1 MeV bunch from 100 fs to 2 fs (50 times compression) over an interaction distance of about 18mm, and the compression of a 1.6 pC 10 MeV bunch from 100 fs to 1.61 fs (62 times) over an interaction distance of 42 cm. The obtained results show the promise of coherent THz pulses in realizing compact electron acceleration and bunch compression schemes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys.81(3), 1229–1285 (2009).
    [CrossRef]
  2. T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
    [CrossRef] [PubMed]
  3. G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett.78(17), 3314–3317 (1997).
    [CrossRef]
  4. A. Karmakar and A. Pukhov, “Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses,” Laser Part. Beams25(03), 371–377 (2007).
    [CrossRef]
  5. S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
    [CrossRef]
  6. A. Mizrahi and L. Schächter, “Optical Bragg accelerators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1 Pt 2), 016505 (2004).
    [CrossRef] [PubMed]
  7. Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed‐laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett.68(6), 753–755 (1996).
    [CrossRef]
  8. T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Phys. Rev. ST Accel. Beams9(11), 111301 (2006).
    [CrossRef]
  9. W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
    [CrossRef] [PubMed]
  10. G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
    [CrossRef] [PubMed]
  11. S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
    [CrossRef]
  12. M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D44(8), 083001 (2011).
    [CrossRef]
  13. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express18(12), 12311–12327 (2010).
    [CrossRef] [PubMed]
  14. J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express19(16), 15090–15097 (2011).
    [CrossRef] [PubMed]
  15. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett.38(5), 796–798 (2013).
    [CrossRef] [PubMed]
  16. J. Hebling, J. A. Fülöp, M. I. Mechler, L. Pálfalvi, C. Tőke, and G. Almási, “Optical manipulation of relativistic electron beams using THz pulses,” arXiv:1109.6852.
  17. R. B. Yoder and J. B. Rosenzweig, “Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power,” Phys. Rev. ST Accel. Beams8(11), 111301 (2005).
    [CrossRef]
  18. G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys.74(9), 096101 (2011).
    [CrossRef]
  19. H. Yoneda, K. Tokuyama, K. Ueda, H. Yamamoto, and K. Baba, “High-power terahertz radiation emitter with a diamond photoconductive switch array,” Appl. Opt.40(36), 6733–6736 (2001).
    [CrossRef] [PubMed]
  20. V. V. Kubarev, “Optical properties of CVD-diamond in terahertz and infrared ranges,” Nucl. Instrum. Methods Phys. Res. A603(1-2), 22–24 (2009).
    [CrossRef]
  21. J. H. Kim, J. Han, M. Yoon, and S. Y. Park, “Theory of wakefields in a dielectric-filled cavity,” Phys. Rev. ST Accel. Beams13(7), 071302 (2010).
    [CrossRef]
  22. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Oxford 1987).
  23. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  24. GPT User Manual, Pulsar Physics.
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992, pp. 714–720).
  26. T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for computing the sample variance: Analysis and recommendations,” Am. Stat.37, 242–247 (1983).
  27. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978).
    [CrossRef]
  28. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
    [CrossRef]
  29. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification,” Opt. Lett.32(4), 433–435 (2007).
    [CrossRef] [PubMed]
  30. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009).
    [CrossRef] [PubMed]
  31. T. Grosjean, F. Baida, R. Adam, J.-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau, “Linear to radial polarization conversion in the THz domain using a passive system,” Opt. Express16(23), 18895–18909 (2008).
    [CrossRef] [PubMed]
  32. J. Yang, N. Naruse, K. Kan, T. Kondoh, Y. Yoshida, and K. Tanimura, “Femtosecond electron guns for ultrafast electron diffraction,” International Particle Accelerator Conference (IPAC’2012), paper FRXBB01.

2013 (1)

2012 (2)

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

2011 (3)

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D44(8), 083001 (2011).
[CrossRef]

G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys.74(9), 096101 (2011).
[CrossRef]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express19(16), 15090–15097 (2011).
[CrossRef] [PubMed]

2010 (2)

J. H. Kim, J. Han, M. Yoon, and S. Y. Park, “Theory of wakefields in a dielectric-filled cavity,” Phys. Rev. ST Accel. Beams13(7), 071302 (2010).
[CrossRef]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express18(12), 12311–12327 (2010).
[CrossRef] [PubMed]

2009 (3)

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys.81(3), 1229–1285 (2009).
[CrossRef]

V. V. Kubarev, “Optical properties of CVD-diamond in terahertz and infrared ranges,” Nucl. Instrum. Methods Phys. Res. A603(1-2), 22–24 (2009).
[CrossRef]

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification,” Opt. Lett.32(4), 433–435 (2007).
[CrossRef] [PubMed]

A. Karmakar and A. Pukhov, “Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses,” Laser Part. Beams25(03), 371–377 (2007).
[CrossRef]

2006 (1)

T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Phys. Rev. ST Accel. Beams9(11), 111301 (2006).
[CrossRef]

2005 (3)

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

R. B. Yoder and J. B. Rosenzweig, “Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power,” Phys. Rev. ST Accel. Beams8(11), 111301 (2005).
[CrossRef]

2004 (1)

A. Mizrahi and L. Schächter, “Optical Bragg accelerators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1 Pt 2), 016505 (2004).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

1997 (1)

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett.78(17), 3314–3317 (1997).
[CrossRef]

1996 (1)

Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed‐laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett.68(6), 753–755 (1996).
[CrossRef]

1988 (1)

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

1983 (1)

T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for computing the sample variance: Analysis and recommendations,” Am. Stat.37, 242–247 (1983).

1978 (1)

Adam, R.

Almási, G.

Andonian, G.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Andreev, A. A.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Antipov, S.

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

Baba, K.

Babzien, M.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Baida, F.

Barber, S.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Billot, L.

Butler, J. E.

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

Byer, R. L.

T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Phys. Rev. ST Accel. Beams9(11), 111301 (2006).
[CrossRef]

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed‐laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett.68(6), 753–755 (1996).
[CrossRef]

Chan, T. F.

T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for computing the sample variance: Analysis and recommendations,” Am. Stat.37, 242–247 (1983).

Chang, G.

Charraut, D.

Chusseau, L.

Colby, E.

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

Cole, B.

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

Cowan, B.

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

Divin, C. J.

Esarey, E.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys.81(3), 1229–1285 (2009).
[CrossRef]

Fedurin, M.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

Fülöp, J. A.

Gai, W.

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

Gallot, G.

Galvanauskas, A.

Golub, G. H.

T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for computing the sample variance: Analysis and recommendations,” Am. Stat.37, 242–247 (1983).

Granados, E.

Grischkowsky, D.

Grosjean, T.

Guillet, J.-P.

Han, J.

J. H. Kim, J. Han, M. Yoon, and S. Y. Park, “Theory of wakefields in a dielectric-filled cavity,” Phys. Rev. ST Accel. Beams13(7), 071302 (2010).
[CrossRef]

Hebling, J.

Helm, M.

Hemsing, E.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Ho, Y. K.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Hoffmann, M. C.

Hong, K.-H.

Huang, S.-W.

Huang, W. R.

Huang, Y. C.

Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed‐laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett.68(6), 753–755 (1996).
[CrossRef]

Jamison, S. P.

Jing, C.

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

Kanareykin, A.

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

Karmakar, A.

A. Karmakar and A. Pukhov, “Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses,” Laser Part. Beams25(03), 371–377 (2007).
[CrossRef]

Kärtner, F. X.

Kawata, S.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Kim, J. H.

J. H. Kim, J. Han, M. Yoon, and S. Y. Park, “Theory of wakefields in a dielectric-filled cavity,” Phys. Rev. ST Accel. Beams13(7), 071302 (2010).
[CrossRef]

Konecny, R.

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

Kong, Q.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Kubarev, V. V.

V. V. Kubarev, “Optical properties of CVD-diamond in terahertz and infrared ranges,” Nucl. Instrum. Methods Phys. Res. A603(1-2), 22–24 (2009).
[CrossRef]

Kusche, K.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

Leemans, W. P.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys.81(3), 1229–1285 (2009).
[CrossRef]

Lefebvre, E.

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett.78(17), 3314–3317 (1997).
[CrossRef]

LeVeque, R. J.

T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for computing the sample variance: Analysis and recommendations,” Am. Stat.37, 242–247 (1983).

Limpouch, J.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Liu, C.-H.

Lu, P. P.

T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Phys. Rev. ST Accel. Beams9(11), 111301 (2006).
[CrossRef]

Malka, G.

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett.78(17), 3314–3317 (1997).
[CrossRef]

Marom, E.

Masuda, S.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

McGowan, R. W.

Miller, R. J. D.

G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys.74(9), 096101 (2011).
[CrossRef]

Miquel, J. L.

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett.78(17), 3314–3317 (1997).
[CrossRef]

Miyanaga, N.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Miyauchi, K.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Miyazaki, S.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Mizrahi, A.

A. Mizrahi and L. Schächter, “Optical Bragg accelerators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1 Pt 2), 016505 (2004).
[CrossRef] [PubMed]

Muggli, P.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Nakajima, K.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Norem, J.

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

Norris, T. B.

Nouvel, P.

O’Shea, B.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Pálfalvi, L.

Park, S. Y.

J. H. Kim, J. Han, M. Yoon, and S. Y. Park, “Theory of wakefields in a dielectric-filled cavity,” Phys. Rev. ST Accel. Beams13(7), 071302 (2010).
[CrossRef]

Penarier, A.

Peter, F.

Plettner, T.

T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Phys. Rev. ST Accel. Beams9(11), 111301 (2006).
[CrossRef]

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

Pukhov, A.

A. Karmakar and A. Pukhov, “Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses,” Laser Part. Beams25(03), 371–377 (2007).
[CrossRef]

Rosenzweig, J.

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

Rosenzweig, J. B.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

R. B. Yoder and J. B. Rosenzweig, “Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power,” Phys. Rev. ST Accel. Beams8(11), 111301 (2005).
[CrossRef]

Sakai, K.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Schächter, L.

A. Mizrahi and L. Schächter, “Optical Bragg accelerators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1 Pt 2), 016505 (2004).
[CrossRef] [PubMed]

Schneider, H.

Schoessow, P.

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

Schroeder, C. B.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys.81(3), 1229–1285 (2009).
[CrossRef]

Sciaini, G.

G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys.74(9), 096101 (2011).
[CrossRef]

Sears, C. M. S.

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

Siemann, R. H.

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

Simpson, J.

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

Sonobe, R.

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Spencer, J. E.

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

Stratakis, D.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Tokuyama, K.

Torres, J.

Tulloch, W. M.

Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed‐laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett.68(6), 753–755 (1996).
[CrossRef]

Ueda, K.

Wei, X.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Williams, O.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Williamson, S. L.

Winnerl, S.

Yakimenko, V.

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

Yamamoto, H.

Yariv, A.

Yeh, P.

Yoder, R. B.

R. B. Yoder and J. B. Rosenzweig, “Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power,” Phys. Rev. ST Accel. Beams8(11), 111301 (2005).
[CrossRef]

Yoneda, H.

Yoon, M.

J. H. Kim, J. Han, M. Yoon, and S. Y. Park, “Theory of wakefields in a dielectric-filled cavity,” Phys. Rev. ST Accel. Beams13(7), 071302 (2010).
[CrossRef]

Zapata, L. E.

Zheng, D.

Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed‐laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett.68(6), 753–755 (1996).
[CrossRef]

Zimmermann, B.

Am. Stat. (1)

T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for computing the sample variance: Analysis and recommendations,” Am. Stat.37, 242–247 (1983).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett.100(13), 132910 (2012).
[CrossRef]

Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed‐laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett.68(6), 753–755 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D44(8), 083001 (2011).
[CrossRef]

Laser Part. Beams (2)

A. Karmakar and A. Pukhov, “Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses,” Laser Part. Beams25(03), 371–377 (2007).
[CrossRef]

S. Kawata, Q. Kong, S. Miyazaki, K. Miyauchi, R. Sonobe, K. Sakai, K. Nakajima, S. Masuda, Y. K. Ho, N. Miyanaga, J. Limpouch, and A. A. Andreev, “Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser,” Laser Part. Beams23(01), 61–67 (2005).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

V. V. Kubarev, “Optical properties of CVD-diamond in terahertz and infrared ranges,” Nucl. Instrum. Methods Phys. Res. A603(1-2), 22–24 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Mizrahi and L. Schächter, “Optical Bragg accelerators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1 Pt 2), 016505 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett.95(13), 134801 (2005).
[CrossRef] [PubMed]

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett.78(17), 3314–3317 (1997).
[CrossRef]

W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J. Rosenzweig, and J. Simpson, “Experimental demonstration of wake-field effects in dielectric structures,” Phys. Rev. Lett.61(24), 2756–2758 (1988).
[CrossRef] [PubMed]

G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide,” Phys. Rev. Lett.108(24), 244801 (2012).
[CrossRef] [PubMed]

Phys. Rev. ST Accel. Beams (3)

T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle laser-driven particle accelerator structure,” Phys. Rev. ST Accel. Beams9(11), 111301 (2006).
[CrossRef]

J. H. Kim, J. Han, M. Yoon, and S. Y. Park, “Theory of wakefields in a dielectric-filled cavity,” Phys. Rev. ST Accel. Beams13(7), 071302 (2010).
[CrossRef]

R. B. Yoder and J. B. Rosenzweig, “Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power,” Phys. Rev. ST Accel. Beams8(11), 111301 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys.74(9), 096101 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys.81(3), 1229–1285 (2009).
[CrossRef]

Other (6)

J. Yang, N. Naruse, K. Kan, T. Kondoh, Y. Yoshida, and K. Tanimura, “Femtosecond electron guns for ultrafast electron diffraction,” International Particle Accelerator Conference (IPAC’2012), paper FRXBB01.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Oxford 1987).

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).

GPT User Manual, Pulsar Physics.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992, pp. 714–720).

J. Hebling, J. A. Fülöp, M. I. Mechler, L. Pálfalvi, C. Tőke, and G. Almási, “Optical manipulation of relativistic electron beams using THz pulses,” arXiv:1109.6852.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of electron bunch acceleration and compression by a TM01 coherent THz pulse in a dielectric-loaded (diamond) cylindrical metal waveguide: The 8-cycle pulse is centered at 0.6 THz, with group velocity 0.399c and phase velocity c. The 1.6 pC-bunch has an initial mean kinetic energy of 1 MeV. Steps of the bunch evolution include: (a) arriving at the rear of the pulse, (b) slipping through an accelerating and compressing quarter-cycle, (c) maximum longitudinal compression and (d) transverse and longitudinal expansion as the electron bunch emerges from the head of the pulse. Each black dot indicates a macro-particle, with 1000 macro-particles used in the simulation. The color maps in (a)-(d) show the value of Er in the y = 0 plane. (e)-(h) is identical to (a)-(d) respectively, except that the color maps show Ez instead of Er.

Fig. 2
Fig. 2

Schematic of proposed waveguide and simulation setup. In this study, the dielectric is diamond (εr = 5.5). The initial relativistic electron bunch is shot through the THz pulse, which propagates at a non-relativistic group velocity.

Fig. 3
Fig. 3

Determination of the optimal waveguide for electron acceleration: (a) Color map of operation frequency f0 as a function of core radius r1 and dielectric thickness d, (b) Color map of final kinetic energy of a single electron of initial kinetic energy 1 MeV, optimized over ψ0 and zi, as a function of r1 and d. The black line in (a) and (b) correspond to an operation frequency of 0.6 THz. The value of the color map in (b) along the 0.6 THz operation line is plotted in (c), where the optimum value of d is identified as d = 32 μm. (d) The dispersion curves corresponding to the final waveguide design.

Fig. 4
Fig. 4

Evolution of bunch parameters with mean bunch position for acceleration of a 1.6 pC electron bunch from 1 MeV to 10 MeV (kinetic energy) in about 20 mm: (a) normalized mean energy, (b) relative energy spread, (c) transverse spread and (d) longitudinal spread. The symbol σ stands for the standard deviation of the variable in the subscript. Solid and dashed lines correspond to simulations with and without space charge respectively. 10000 macro-particles are used for the simulations. ψ0 = 1.34π and k0zi = 10.96π. Α 20 mJ, 10-cycle (16.7 ps), 0.6 THz-centered pulse is considered.

Fig. 5
Fig. 5

Evolution of bunch parameters with mean bunch position for acceleration of a 1.6 pC electron injected at a distant point from the THz pulse peak: (a) normalized mean energy, (b) relative energy spread. Solid and dashed lines correspond to simulations with and without space charge respectively. 10000 macro-particles were used for the simulations.

Fig. 6
Fig. 6

Plots used to assess thermal damage and dielectric breakdown prospects for the scheme in Sec. 4.1. (a) Final temperature of copper cladding assuming initial temperature of 27 °C (z = 0 is the start of the waveguide), and (b) Field profile of the TM01 mode in the transverse direction of the cylindrical waveguide under study. Discontinuities occur at material boundaries (once at the vacuum-diamond interface and again at the diamond-copper interface).

Fig. 7
Fig. 7

Evolution of bunch parameters with mean bunch position for optimized acceleration of 1.6pC, 16pC and 160pC electron bunches: (a) normalized mean energy, (b) relative energy spread, (c) transverse spread and (d) longitudinal spread. Since the acceleration of a 160 pC bunch (green curve) is not feasible, this case is shown in (a) and (b) to demonstrate the rapidness of the Coulomb explosion, but omitted from (c) and (d) to reduce clutter. In each of the cases (1.6 pC and 16 pC) in (c), σx and σy practically overlap and are moreover interchangeable by a rotation of the transverse coordinates, so we do not distinguish between them, but plot both of them to show the near (but not perfect) radial symmetry in the transverse distribution. All results include space charge. 10000 macro-particles are used for all simulations. ψ0 = 1.34π and k0zi = 10.96π. Α 20 mJ, 10-cycle (16.7 ps), 0.6 THz-centered pulse is used in all cases.

Fig. 8
Fig. 8

Concurrent compression and acceleration of a 1.6 pC electron bunch under optimized conditions, with a compression factor of 50 and 62 achieved for initial kinetic energies of 1 MeV and 10 MeV respectively. The evolution of (a) normalized mean energy, (b) relative energy spread and (c) longitudinal spread are shown for a 1 MeV bunch subjected to a 20 mJ, 7.86-cycle (13.1 ps), 0.6 THz-centered pulse (ψ0 = 0.73π and k0zi = 13.3π). Similarly, the evolution of (e) normalized mean energy, (f) relative energy spread and (g) longitudinal spread are shown for a 10MeV bunch subjected to a 20 mJ, 102.3-cycle (170.5ps), 0.6 THz-centered pulse (ψ0 = 1.02π and k0zi = 206π). Blue solid curves and red dashed curves indicate simulations with and without space charge respectively. 10000 macro-particles were used for all simulations

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d p i (t) dt = F i d (t)+ j=1, ij N ( F i,j pp (t)+ F i wf (t)+ F i rr (t) ) ,withi=1,...,N,
F i d (t)=q[ E d (t, r i (t))+ v i (t)× B d (t, r i (t)) ],
F pp;i,j (t)=q[ E j (t, r i (t))+ v i (t)× B j (t, r i (t)) ],
E i (t, r )= q 4π ε 0 1 η i, t ˜ i 3 ( r ) R i, t ˜ i ( r ) { u i, t ˜ i ( r ) γ i 2 ( t ˜ i ) R i, t ˜ i ( r ) + 1 c [ i ^ i, t ˜ i ( r )×( u i, t ˜ i ( r )× v ˙ i ( t ˜ i ) c ) ] } B i (t, r )= 1 c ( i ^ i, t ˜ i ( r )× E i (t, r ) ),
t ˜ i =t R i, t ˜ i ( r ) c .
( 2 + k 2 ){ E z CW H z CW }=0 1 r r ( r r { ψ e ψ h } )+( k 2 κ 2 l 2 r 2 ){ ψ e ψ h }=0,
ψ e;i (r)= A e;i J l ( h i r)+ B e;i Y l ( h i r), r i1 r< r i ,i=1,...,n,
E z;i (l,t,r,z,φ)=Re{ F(ω) E z;i CW (l,ω,t,r,z,φ) dω }, E r;i (l,t,r,z,φ)=Re{ F(ω) E r;i CW (l,ω,t,r,z,φ) dω }, H φ;i (l,t,r,z,φ)=Re{ F(ω) H φ;i CW (l,ω,t,r,z,φ) dω }, r i1 r< r i ,i=1,...,n,
E z,1 CW = A e;1 I 0 ( q 1 r )e i( ωtκz ) , E r,1 CW = A e;1 iκ q 1 I 1 ( q 1 r )e i( ωtκz ) , H φ,1 CW = k η 0 κ E r,1 CW ,
E z;1 (t,z)Re{ I 0 ( q 1,0 r )e i( ω 0 t κ 0 z ) A 0 e ( Δω T 0 ) 2 2 e i( κ 1 Δω+ κ 2 2 ( Δω ) 2 )z e iΔωt dΔω } = | E z0 | I 0 ( q 1,0 r) [ 1+ ( κ 2 z/ T 0 2 ) 2 ] 1/4 e ( t κ 1 ( z z i ) ) 2 2 T 0 2 [ 1+ ( κ 2 z/ T 0 2 ) 2 ] e α( z z s ) cos( ψ T ),z z s ,
ψ T = ω 0 t κ 0 z+ ( t κ 1 ( z z i ) ) 2 κ 2 z/ T 0 2 2 T 0 2 [ 1+ ( κ 2 z/ T 0 2 ) 2 ] atan( κ 2 z T 0 2 )+ ψ 0 ,
E r;1 (t,r,z) κ 0 q 1,0 I 1 ( q 1,0 r) I 0 ( q 1,0 r) E z;1 (t,z)tan( ψ T ), H φ;1 (t,r,z) k 0 E r;1 (t,r,z) κ 0 η 0 .
dG= d m Cu CΔθ.
P(t,z) P 0 e ( t κ 1 ( z z i ) ) 2 T 0 2 e 2αz ,z0,
P( t,z ) z ρ Cu 2π r 2 δ s C θ( t,z ) t .
θ( t,z ) θ 0 P 0 e 2αz ρ Cu π r 2 δ s C t ( κ 1 t T 0 2 α ) e ( t T 0 ) 2 dt .
θ( ,z ) θ 0 P 0 α T 0 ρ Cu π r 2 δ s C e 2αz .

Metrics