Abstract

We demonstrate optical modulation rates exceeding the conventional cavity linewidth limit using a silicon coupling modulated microring. Small-signal measurements show coupling modulation was free of the parasitic cavity linewidth limitations at rates at least 6× the cavity linewidth. Eye diagram measurements show coupling modulation achieved data rates > 2× the rate attainable by conventional intracavity phase modulation. We propose to use DC-balanced encoding to mitigate the inter-symbol interference in coupling modulation. Analysis shows that coupling modulation can be more efficient than intracavity modulation for large output swings and high-Q resonators. Coupling modulation enables very high-Q resonant modulators to be simultaneously low-power and high-speed, features which are mutually incompatible in typical resonant modulators studied to date.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
    [CrossRef]
  2. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express19, 26017–26026 (2011).
    [CrossRef]
  3. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17, 22484–22490 (2009).
    [CrossRef]
  4. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25 Gb/s 1 V-driving cmos ring modulator with integrated thermal tuning,” Opt. Express19, 20435–20443 (2011).
    [CrossRef] [PubMed]
  5. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
    [CrossRef]
  6. W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
    [CrossRef]
  7. J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
    [CrossRef] [PubMed]
  8. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol.20, 1968–1975 (2002).
    [CrossRef]
  9. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express16, 15741–15753 (2008).
    [CrossRef] [PubMed]
  10. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol.27, 3800–3811 (2009).
    [CrossRef]
  11. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14, 483–485 (2002).
    [CrossRef]
  12. W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express13, 1651–1659 (2005).
    [CrossRef] [PubMed]
  13. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express15, 9194–9204 (2007).
    [CrossRef] [PubMed]
  14. D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
    [CrossRef]
  15. P. Dong, L. Chen, Q. F. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Opt. Lett.34, 2315–2317 (2009).
    [CrossRef] [PubMed]
  16. D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
    [CrossRef]
  17. W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.
  18. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Elect.23, 123–129 (1987).
    [CrossRef]
  19. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett.36, 3338–3340 (2011).
    [CrossRef] [PubMed]
  20. S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.
  21. S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.
  22. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15, 430–436 (2007).
    [CrossRef] [PubMed]
  23. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15, 17106–17113 (2007).
    [CrossRef] [PubMed]
  24. S. Manipatruni, Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), 537 –538.
  25. M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in “Integrated Photonics Research, Silicon and Nanophotonics,” (2010), IMC2.
  26. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
    [CrossRef]
  27. W. D. Sacher and J. K. S. Poon, “Microring quadrature modulators,” Opt. Lett.34, 3878–3880 (2009).
    [CrossRef] [PubMed]
  28. W. D. Sacher, E. J. Zhang, B. A. Kruger, and J. K. S. Poon, “High-speed laser modulation beyond the relaxation resonance frequency limit,” Opt. Express18, 7047–7054 (2010).
    [CrossRef] [PubMed]

2012

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
[CrossRef]

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

2011

2010

W. D. Sacher, E. J. Zhang, B. A. Kruger, and J. K. S. Poon, “High-speed laser modulation beyond the relaxation resonance frequency limit,” Opt. Express18, 7047–7054 (2010).
[CrossRef] [PubMed]

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

2009

2008

2007

2005

2002

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol.20, 1968–1975 (2002).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14, 483–485 (2002).
[CrossRef]

1987

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Elect.23, 123–129 (1987).
[CrossRef]

Asghari, M.

Assefa, S.

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.

S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.

Barwicz, T.

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.

Beattie, J.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Elect.23, 123–129 (1987).
[CrossRef]

Carothers, D.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Chen, L.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

Chen, Y.-K.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Chu, T.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Cunningham, J. E.

Dalton, L. R.

DeRose, G. A.

Dong, P.

Ellis-Monaghan, J.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Feng, D.

Gill, D.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Gill, D. M.

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Green, W.

W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.

S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.

Green, W. M. J.

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15, 17106–17113 (2007).
[CrossRef] [PubMed]

W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express13, 1651–1659 (2005).
[CrossRef] [PubMed]

Gu,

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Haensch, W.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Hill, C.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Hofrichter, J.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Horst, F.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.

Hsia, A.

W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
[CrossRef]

Hu, Y.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Ilchenko, V. S.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

Kamlapurkar, S.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Kamocsai, R.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Khater, M.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Kiewra, E.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Krishnamoorthy, A. V.

Kruger, B. A.

Kung, C.-C.

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

Lee, R. K.

Lentine, A.

W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
[CrossRef]

Lentine, A. L.

Li, G.

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

Li, X.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Li, Z.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Liang, H.

Liao, S.

Lipson, M.

P. Dong, L. Chen, Q. F. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Opt. Lett.34, 2315–2317 (2009).
[CrossRef] [PubMed]

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15, 430–436 (2007).
[CrossRef] [PubMed]

S. Manipatruni, Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), 537 –538.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef]

Luo, Y.

Maleki, L.

Manipatruni, S.

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15, 430–436 (2007).
[CrossRef] [PubMed]

S. Manipatruni, Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), 537 –538.

Matsko, A. B.

Offrein, B.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

Pan, H.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Patel, S.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Pomerene, A.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Poon, A. W.

Poon, J.

W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.

Poon, J. K. S.

Popovic, M. A.

M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in “Integrated Photonics Research, Silicon and Nanophotonics,” (2010), IMC2.

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef]

Proesel, P.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Qian, W.

Rabiei, P.

Raj, K.

Rasras, M.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Reinholm, C.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Rice, P.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Robertson, G.

W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
[CrossRef]

Rooks, M. J.

Rosenberg, J.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Rosenberg, J. C.

Rylyakov, A.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.

Sacher, W.

W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.

Sacher, W. D.

Savchenkov, A. A.

Scherer, A.

Schmidt, B.

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15, 430–436 (2007).
[CrossRef] [PubMed]

S. Manipatruni, Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), 537 –538.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef]

Schow, C.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.

Seidel, D.

Sekaric, L.

Shafiiha, R.

Shakya, J.

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15, 430–436 (2007).
[CrossRef] [PubMed]

S. Manipatruni, Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), 537 –538.

Shank, S.

W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.

Shank, S. M.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

Shubin, I.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Elect.23, 123–129 (1987).
[CrossRef]

Steier, W. H.

Thacker, H.

Topuria, T.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Trotter, D.

W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
[CrossRef]

Trotter, D. C.

Tu, K.-Y.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

Vlasov, Y.

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.

S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.

Vlasov, Y. A.

Watts, M.

W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
[CrossRef]

Watts, M. R.

White, A.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

Xiao, X.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Xiong, K.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Xu, H.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Xu, Q. F.

P. Dong, L. Chen, Q. F. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Opt. Lett.34, 2315–2317 (2009).
[CrossRef] [PubMed]

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15, 430–436 (2007).
[CrossRef] [PubMed]

S. Manipatruni, Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), 537 –538.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

Yang, M.

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

Yao, J.

Yariv, A.

Yu, J.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Yu, Y.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

Zhang, C.

Zhang, E. J.

Zheng, D.

Zheng, X.

Zhou, L.

Zortman, W.

W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
[CrossRef]

Zortman, W. A.

IEEE International Electron Devices Meeting (IEDM)

S. Assefa, S. M. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, P. Proesel, J. Hofrichter, B. Offrein, Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in “IEEE International Electron Devices Meeting (IEDM),” (2012), 33.8–33.8.3.

IEEE J. Quant. Elect.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Elect.23, 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quant. Elect.

D. Gill, S. Patel, M. Rasras, K.-Y. Tu, A. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. Kamocsai, C. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quant. Elect.16, 45 –52 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. White, S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon. Technol. Lett.21, 200 –202 (2009).
[CrossRef]

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24, 1712–1714 (2012).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14, 483–485 (2002).
[CrossRef]

IEEE Photonics Journal

W. Zortman, D. Trotter, A. Lentine, G. Robertson, A. Hsia, and M. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photonics Journal4, 242 –249 (2012).
[CrossRef]

J. Lightwave Technol.

Nature

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef]

Nature Photonics

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photonics6, 369–373 (2012).
[CrossRef]

Opt. Express

W. D. Sacher, E. J. Zhang, B. A. Kruger, and J. K. S. Poon, “High-speed laser modulation beyond the relaxation resonance frequency limit,” Opt. Express18, 7047–7054 (2010).
[CrossRef] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25 Gb/s 1 V-driving cmos ring modulator with integrated thermal tuning,” Opt. Express19, 20435–20443 (2011).
[CrossRef] [PubMed]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express19, 26017–26026 (2011).
[CrossRef]

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express13, 1651–1659 (2005).
[CrossRef] [PubMed]

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15, 430–436 (2007).
[CrossRef] [PubMed]

L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express15, 9194–9204 (2007).
[CrossRef] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15, 17106–17113 (2007).
[CrossRef] [PubMed]

W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express16, 15741–15753 (2008).
[CrossRef] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17, 22484–22490 (2009).
[CrossRef]

Opt. Lett.

The Annual Meeting of the IEEE Lasers and Electro-Optics Society

S. Manipatruni, Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), 537 –538.

Other

M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in “Integrated Photonics Research, Silicon and Nanophotonics,” (2010), IMC2.

W. Sacher, W. Green, S. Assefa, T. Barwicz, S. Shank, Y. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in “Conference on Lasers and Electro-Optics (CLEO),” (2011), PDPA8.

S. Assefa, W. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics-enabling technology for exascale computing systems,” in “Optical Fiber Communication Conference (OFC/NFOEC),” (2011), OMM6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of (a) an intracavity modulated microring and (b) a coupling modulated microring that uses a 2 × 2 MZI-coupler as marked by the box. Optical microscope images of the fabricated SOI (c) microring with the 2 × 2 MZI-coupler marked by the box and (d) the reference MZI. The reference MZI was nominally identical to the MZI-coupler in the microring. The microring and MZI were separated by 620 μm on the die.

Fig. 2
Fig. 2

Measured transmission spectra for (a) tuning the coupling coefficient at a fixed resonance and (b) tuning the resonance wavelength with a fixed coupling coefficient. Independent tuning of the coupling and resonance wavelength using the thermal tuners was achieved.

Fig. 3
Fig. 3

(a) Electro-optic S21 measurements of the reference MZI, coupling modulation, and intracavity modulation. The RF cables, RF adapters, and bias tees have been de-embedded. (b) Optical small-signal modulation responses of coupling and intracavity modulation. Each curve is obtained by normalizing the electro-optic S21 of the microring to the S21 of the reference MZI and referencing to the value at 100 MHz. The microring was biased near critical coupling, with a cavity linewidth Δν ≈ 6 GHz. The intracavity modulation response for a ∼ 1.3 GHz detuning from resonance (blue) has a 3 dB bandwidth of 4.4 GHz, similar to the linewidth. A ∼ 5 GHz detuning produces a resonant sideband peak near the value of the detuning (red), and the 3 dB bandwidth is extended to ∼ 13 GHz. The coupling modulation response (black) does not roll-off to 40 GHz (more than 6× the linewidth).

Fig. 4
Fig. 4

Eye diagrams of coupling (top) and intracavity (bottom) modulation at 6–28 Gb/s for bias points near critical coupling (Δν ≈ 6 − 7 GHz). The coupling modulation eye is open at 28 Gb/s, but the intracavity modulation eye closes at bit rates greater than roughly 2× the linewidth.

Fig. 5
Fig. 5

(a) Intracavity modulation eye diagrams of an over-coupled microring (Δν ≈ 9 GHz). The eye opening is larger than in Fig. 4, confirming that the intracavity modulation bandwidth depends on the cavity linewidth. (b) Eye diagrams of the pre-emphasized electrical drive signals at 28 Gb/s (left) and the resultant optical output of the reference MZI (right). No remnants of the pre-emphasis are present in the optical output.

Fig. 6
Fig. 6

Computed eye diagrams at several bit rates for (top) intracavity modulation and (center) coupling modulation driven by an uncoded NRZ signal, and (bottom) coupling modulation driven by a NRZ 8b/10b encoded signal. The calculations assume a group index of 4.3, a NRZ PRBS 217 − 1 data signal, Δν = 5 GHz, a round-trip length of 250 μm, a resonant input for coupling modulation, and critical coupling for intracavity modulation. With DC-balanced encoding, coupling modulation can achieve a 0–90% swing at 100 Gb/s. In contrast to intracavity modulation, the DC-balanced encoded coupling modulation eye diagram becomes more open at high bit rates.

Fig. 7
Fig. 7

The coupling modulation efficiency, ηc, versus microring waveguide loss and cavity linewidth computed for several round-trip lengths, L. The calculations assume a 8b/10b encoded drive signal, a 0–90% output swing, a group index of 4.3, a NRZ PRBS 217 − 1 data signal, a resonant input, and critical coupling. The intracavity efficiency, ηi, of a 5 μm radius microring with the same output swing at 40 Gb/s and 100 Gb/s, using linewidths of 20 GHz and 50 GHz respectively, are marked for comparison. Critical coupling is assumed. Coupling modulation becomes increasingly efficient over intracavity modulation as the Q factor and bit rate increase.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

𝖲 cm = S 21 , c m S 21 , M Z I , push pull ,
𝖲 im = S 21 , im S 21 , M Z I , single ,
η = Δ ϕ M Z I Δ ϕ ring ,
η i k i F ,
η c k c F ,

Metrics