Abstract

We perform plasmon-enhanced femtosecond laser ablation of silicon using gold nanorods to produce sub-diffraction limit features. While the observed hole shape seems inconsistent with calculated field distribution, we show that using a carrier diffusion-based model, both shape and depth of the nanoholes can be reliably explained. The laser energy is first deposited into electron-hole pairs that are created in the nanostructure’s enhanced near-field. Those carriers then diffuse and transfer their energy to the silicon lattice, producing ablation. Increased importance of the carrier diffusion process is shown to arise from the extreme localization of the deposited energy around the nanostructure, due to the plasmonic effect. The characteristic shape of holes is revealed as a striking signature of the screened charge carriers-phonon coupling that is shown to channel the heat transfer to the lattice and control ablation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Plech, P. Leiderer, and J. Boneberg, “Femtosecond laser near field ablation,” Laser & Photonics Rev.3, 435–451 (2009).
    [CrossRef]
  2. D. Eversole, B. Lukyanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A89, 283–291 (2007).
    [CrossRef]
  3. N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology18, 305703 (2007).
    [CrossRef]
  4. R. K. Harrison and A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate,” Opt. Express18, 22556–22571 (2010).
    [CrossRef] [PubMed]
  5. J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
    [CrossRef]
  6. P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci.254, 794–798 (2007).
    [CrossRef]
  7. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).
  8. E. Boulais, A. Robitaille, P. Desjeans-Gauthier, and M. Meunier, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: comment,” Opt. Express19, 6177–6178 (2011).
    [CrossRef] [PubMed]
  9. Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474, 146–152 (2009).
    [CrossRef]
  10. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990).
    [CrossRef]
  11. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7, 196–198 (1982).
    [CrossRef] [PubMed]
  12. S. Besner, J.-Y. Degorce, A. V. Kabashin, and M. Meunier, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” in Proc. SPIE Int. Soc. Opt. Eng., Vol. 5578 (SPIE, 2004) pp. 554–558.
  13. P. Kekicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir10, 1584–1591 (1994).
    [CrossRef]
  14. L. J. Lewis and D. Perez, “Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular-dynamics simulations,” Appl. Surf. Sci.255, 5101–5106 (2009).
    [CrossRef]
  15. H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
    [CrossRef]
  16. R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998).
    [CrossRef]
  17. P. Lorazo, L. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73, 134108 (2006).
    [CrossRef]
  18. H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-m picosecond laser pulses,” Phys. Rev. B35, 8166–8176 (1987).
    [CrossRef]
  19. J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer48, 501–509 (2005).
    [CrossRef]
  20. T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys.92, 4918–4925 (2002).
    [CrossRef]
  21. D. P. Korfiatis, K.-A. T. Thoma, and J. C. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D40, 6803–6808 (2007).
    [CrossRef]
  22. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27, 985–1009 (1983).
    [CrossRef]
  23. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90, 191104 (2007).
    [CrossRef]
  24. E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B21, 2415–2425 (1980).
    [CrossRef]
  25. D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys.55, 4376–4383 (1984).
    [CrossRef]
  26. J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B26, 2147–2158 (1982).
    [CrossRef]
  27. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61, 2643–2650 (2000).
    [CrossRef]
  28. T. Sjodin, H. Petek, and H.-l. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett.81, 5664–5667 (1998).
    [CrossRef]
  29. A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B66, 165217 (2002).
    [CrossRef]
  30. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997).
    [CrossRef]
  31. T. Crawford, A. Borowiec, and H. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A80, 1717–1724 (2004).
    [CrossRef]

2011 (1)

2010 (1)

2009 (3)

A. Plech, P. Leiderer, and J. Boneberg, “Femtosecond laser near field ablation,” Laser & Photonics Rev.3, 435–451 (2009).
[CrossRef]

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474, 146–152 (2009).
[CrossRef]

L. J. Lewis and D. Perez, “Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular-dynamics simulations,” Appl. Surf. Sci.255, 5101–5106 (2009).
[CrossRef]

2007 (6)

D. P. Korfiatis, K.-A. T. Thoma, and J. C. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D40, 6803–6808 (2007).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

D. Eversole, B. Lukyanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A89, 283–291 (2007).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology18, 305703 (2007).
[CrossRef]

J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci.254, 794–798 (2007).
[CrossRef]

2006 (1)

P. Lorazo, L. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73, 134108 (2006).
[CrossRef]

2005 (1)

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer48, 501–509 (2005).
[CrossRef]

2004 (1)

T. Crawford, A. Borowiec, and H. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A80, 1717–1724 (2004).
[CrossRef]

2002 (3)

T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys.92, 4918–4925 (2002).
[CrossRef]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
[CrossRef]

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B66, 165217 (2002).
[CrossRef]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61, 2643–2650 (2000).
[CrossRef]

1998 (2)

T. Sjodin, H. Petek, and H.-l. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett.81, 5664–5667 (1998).
[CrossRef]

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998).
[CrossRef]

1997 (1)

1994 (1)

P. Kekicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir10, 1584–1591 (1994).
[CrossRef]

1990 (1)

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990).
[CrossRef]

1987 (1)

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-m picosecond laser pulses,” Phys. Rev. B35, 8166–8176 (1987).
[CrossRef]

1984 (1)

D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys.55, 4376–4383 (1984).
[CrossRef]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27, 985–1009 (1983).
[CrossRef]

1982 (2)

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B26, 2147–2158 (1982).
[CrossRef]

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7, 196–198 (1982).
[CrossRef] [PubMed]

1980 (1)

E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B21, 2415–2425 (1980).
[CrossRef]

Abate, Y.

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474, 146–152 (2009).
[CrossRef]

Agassi, D.

D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys.55, 4376–4383 (1984).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27, 985–1009 (1983).
[CrossRef]

Atanasov, P. A.

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology18, 305703 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci.254, 794–798 (2007).
[CrossRef]

Ben-Yakar, A.

R. K. Harrison and A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate,” Opt. Express18, 22556–22571 (2010).
[CrossRef] [PubMed]

D. Eversole, B. Lukyanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A89, 283–291 (2007).
[CrossRef]

Beraun, J.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer48, 501–509 (2005).
[CrossRef]

Besner, S.

S. Besner, J.-Y. Degorce, A. V. Kabashin, and M. Meunier, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” in Proc. SPIE Int. Soc. Opt. Eng., Vol. 5578 (SPIE, 2004) pp. 554–558.

Boneberg, J.

A. Plech, P. Leiderer, and J. Boneberg, “Femtosecond laser near field ablation,” Laser & Photonics Rev.3, 435–451 (2009).
[CrossRef]

J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
[CrossRef]

Bonse, J.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
[CrossRef]

Borowiec, A.

T. Crawford, A. Borowiec, and H. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A80, 1717–1724 (2004).
[CrossRef]

Boulais, E.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

Campbell, E.

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998).
[CrossRef]

Chen, J.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer48, 501–509 (2005).
[CrossRef]

Chichkov, B. N.

Choi, T. Y.

T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys.92, 4918–4925 (2002).
[CrossRef]

Crawford, T.

T. Crawford, A. Borowiec, and H. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A80, 1717–1724 (2004).
[CrossRef]

Dai, H.-l.

T. Sjodin, H. Petek, and H.-l. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett.81, 5664–5667 (1998).
[CrossRef]

Degorce, J.-Y.

S. Besner, J.-Y. Degorce, A. V. Kabashin, and M. Meunier, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” in Proc. SPIE Int. Soc. Opt. Eng., Vol. 5578 (SPIE, 2004) pp. 554–558.

Desjeans-Gauthier, P.

Eversole, D.

D. Eversole, B. Lukyanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A89, 283–291 (2007).
[CrossRef]

Garcia, M. E.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
[CrossRef]

Gerlach, J.

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998).
[CrossRef]

Grigoropoulos, C. P.

T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys.92, 4918–4925 (2002).
[CrossRef]

Harrison, R. K.

Hasegawa, E.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990).
[CrossRef]

Haugen, H.

T. Crawford, A. Borowiec, and H. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A80, 1717–1724 (2004).
[CrossRef]

Herrmann, R.

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).

Jacobs, H.

Jeschke, H. O.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
[CrossRef]

Kabashin, A. V.

S. Besner, J.-Y. Degorce, A. V. Kabashin, and M. Meunier, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” in Proc. SPIE Int. Soc. Opt. Eng., Vol. 5578 (SPIE, 2004) pp. 554–558.

Kautek, W.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
[CrossRef]

Kawakami, M.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990).
[CrossRef]

Kekicheff, P.

P. Kekicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir10, 1584–1591 (1994).
[CrossRef]

König-Birk, J.

J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
[CrossRef]

Korfiatis, D. P.

D. P. Korfiatis, K.-A. T. Thoma, and J. C. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D40, 6803–6808 (2007).
[CrossRef]

Krüger, J.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
[CrossRef]

Leiderer, P.

A. Plech, P. Leiderer, and J. Boneberg, “Femtosecond laser near field ablation,” Laser & Photonics Rev.3, 435–451 (2009).
[CrossRef]

J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
[CrossRef]

Lenzner, M.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
[CrossRef]

Leone, S. R.

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474, 146–152 (2009).
[CrossRef]

Lewis, L.

P. Lorazo, L. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73, 134108 (2006).
[CrossRef]

Lewis, L. J.

L. J. Lewis and D. Perez, “Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular-dynamics simulations,” Appl. Surf. Sci.255, 5101–5106 (2009).
[CrossRef]

Liu, J. M.

Lorazo, P.

P. Lorazo, L. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73, 134108 (2006).
[CrossRef]

Lukyanchuk, B.

D. Eversole, B. Lukyanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A89, 283–291 (2007).
[CrossRef]

Meunier, M.

E. Boulais, A. Robitaille, P. Desjeans-Gauthier, and M. Meunier, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: comment,” Opt. Express19, 6177–6178 (2011).
[CrossRef] [PubMed]

P. Lorazo, L. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73, 134108 (2006).
[CrossRef]

S. Besner, J.-Y. Degorce, A. V. Kabashin, and M. Meunier, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” in Proc. SPIE Int. Soc. Opt. Eng., Vol. 5578 (SPIE, 2004) pp. 554–558.

Momma, C.

Morita, M.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990).
[CrossRef]

Münzer, H.-J.

J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
[CrossRef]

Nedyalkov, N. N.

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology18, 305703 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci.254, 794–798 (2007).
[CrossRef]

Nolte, S.

Obara, M.

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci.254, 794–798 (2007).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology18, 305703 (2007).
[CrossRef]

Ohmi, T.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990).
[CrossRef]

Ohwada, M.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990).
[CrossRef]

Perez, D.

L. J. Lewis and D. Perez, “Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular-dynamics simulations,” Appl. Surf. Sci.255, 5101–5106 (2009).
[CrossRef]

Petek, H.

T. Sjodin, H. Petek, and H.-l. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett.81, 5664–5667 (1998).
[CrossRef]

Plech, A.

A. Plech, P. Leiderer, and J. Boneberg, “Femtosecond laser near field ablation,” Laser & Photonics Rev.3, 435–451 (2009).
[CrossRef]

Riffe, D. M.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B66, 165217 (2002).
[CrossRef]

Robitaille, A.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

Sabbah, A. J.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B66, 165217 (2002).
[CrossRef]

Sakai, T.

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci.254, 794–798 (2007).
[CrossRef]

Schatz, G.

J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
[CrossRef]

Schwartzberg, A.

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474, 146–152 (2009).
[CrossRef]

Shuford, K.

J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
[CrossRef]

Sjodin, T.

T. Sjodin, H. Petek, and H.-l. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett.81, 5664–5667 (1998).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61, 2643–2650 (2000).
[CrossRef]

Spalla, O.

P. Kekicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir10, 1584–1591 (1994).
[CrossRef]

Strasser, D.

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474, 146–152 (2009).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27, 985–1009 (1983).
[CrossRef]

Thoma, K.-A. T.

D. P. Korfiatis, K.-A. T. Thoma, and J. C. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D40, 6803–6808 (2007).
[CrossRef]

Tünnermann, A.

Tzou, D.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer48, 501–509 (2005).
[CrossRef]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-m picosecond laser pulses,” Phys. Rev. B35, 8166–8176 (1987).
[CrossRef]

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B26, 2147–2158 (1982).
[CrossRef]

Vardaxoglou, J. C.

D. P. Korfiatis, K.-A. T. Thoma, and J. C. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D40, 6803–6808 (2007).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61, 2643–2650 (2000).
[CrossRef]

Wellegehausen, B.

Welling, H.

Yoffa, E. J.

E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B21, 2415–2425 (1980).
[CrossRef]

Young, J. F.

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B26, 2147–2158 (1982).
[CrossRef]

Appl. Phys. A (4)

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998).
[CrossRef]

D. Eversole, B. Lukyanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A89, 283–291 (2007).
[CrossRef]

J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, and G. Schatz, “Optical near-fields of triangular nanostructures,” Appl. Phys. A89, 299–303 (2007).
[CrossRef]

T. Crawford, A. Borowiec, and H. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A80, 1717–1724 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

Appl. Surf. Sci. (3)

L. J. Lewis and D. Perez, “Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular-dynamics simulations,” Appl. Surf. Sci.255, 5101–5106 (2009).
[CrossRef]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci.197–198, 839–844 (2002).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci.254, 794–798 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474, 146–152 (2009).
[CrossRef]

Int. J. Heat Mass Transfer (1)

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer48, 501–509 (2005).
[CrossRef]

J. Appl. Phys. (3)

T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys.92, 4918–4925 (2002).
[CrossRef]

D. Agassi, “Phenomenological model for pisosecond-pulse laser annealing of semiconductors,” J. Appl. Phys.55, 4376–4383 (1984).
[CrossRef]

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys.68, 1272–1281 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

D. P. Korfiatis, K.-A. T. Thoma, and J. C. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D40, 6803–6808 (2007).
[CrossRef]

Langmuir (1)

P. Kekicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir10, 1584–1591 (1994).
[CrossRef]

Laser & Photonics Rev. (1)

A. Plech, P. Leiderer, and J. Boneberg, “Femtosecond laser near field ablation,” Laser & Photonics Rev.3, 435–451 (2009).
[CrossRef]

Nanotechnology (1)

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology18, 305703 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (7)

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B66, 165217 (2002).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27, 985–1009 (1983).
[CrossRef]

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B26, 2147–2158 (1982).
[CrossRef]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61, 2643–2650 (2000).
[CrossRef]

E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B21, 2415–2425 (1980).
[CrossRef]

P. Lorazo, L. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73, 134108 (2006).
[CrossRef]

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-m picosecond laser pulses,” Phys. Rev. B35, 8166–8176 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

T. Sjodin, H. Petek, and H.-l. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett.81, 5664–5667 (1998).
[CrossRef]

Other (2)

S. Besner, J.-Y. Degorce, A. V. Kabashin, and M. Meunier, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” in Proc. SPIE Int. Soc. Opt. Eng., Vol. 5578 (SPIE, 2004) pp. 554–558.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of the ablation model. Left panel: nanorod on a silicon surface with plotted energy absorption rate. Laser irradiation (a) generates a population of energetic carriers (b) following the profile of the electric field. (c) Those carriers will diffuse (red arrow) while transferring energy to the lattice as phonons (black arrow). This transfer is screened where the carriers density is too high, represented by the scaling of the black arrows. Right panel shows lattice energy density. The screening results in a lower energy density where the electron density is high and produces a maximal energy density where the two diffusion fronts coming from both hot spots converge. (d) Ablation occurs where it reaches the ablation threshold (black dotted line at low fluence and blue dotted line at high fluence).

Fig. 2
Fig. 2

TEM imaging of a 88×41nm gold nanorod. Inset presents a zoomed picture showing a 1nm CTAB shell around the nanostructure.

Fig. 3
Fig. 3

Experimental (dots) and simulated (squares) hole depth as a function of fluence. Dotted line shows conventional ablation threshold for silicon (380mJ/cm2).

Fig. 4
Fig. 4

AFM mesurement of hole shape for a fluence of (a) 202mJ/cm2 and (b) 269mJ/cm2. Energy absorption rate enhancement profile Q/Q0 at mid-pulse (log scale) for a fluence of 270mJ/cm2 (c) cross-section and (d) top view. Q0 corresponds to absorption rate without the nanostructure. Lattice energy density Ul from (e) cross-section and (f) top view for the same fluence after 10ps. Dotted lines show nanorod’s size.

Tables (1)

Tables Icon

Table 1 Model parameters for silicon

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Q = 1 2 ω ε | E | 2 = 1 2 ω [ ε l + ε n l ( E ) + ε Drude ( N ) ] | E | 2
× ( × E ) 4 π 2 λ 2 ε E = 0
N t + J c = ( α I h ν + β I 2 2 h ν ) + N ( δ 1 τ r )
U c t + ( W k c T c ) = Q 3 k B N ( T c T l ) τ c p
U l t ( k l T l ) = 3 k B N ( T c T l ) τ c p
J c = D a ( N + 2 N k B T c E g + N 2 T c T c )
W = ( E g + 4 k B T e ) J c
U c = N E g + 3 k B N T c U l = C l T l
α + 1 2 c n 0 ε 0 β | E | 2 = 4 π λ κ
ε = ( n i κ ) 2
Δ ε Drude = ( ω p ω ) 2 1 i ω τ D 1
τ c p = τ 0 [ 1 + ( N N c ) 2 ]

Metrics