Abstract

We propose multi-band metamaterial absorbers at microwave frequencies. The design, the analysis, the fabrication, and the measurement of the absorbers working in multiple bands are presented. The numerical simulations and the experiments in the microwave anechoic chamber were performed. The metamaterial absorbers consist of an delicate arrangement of donut-shape resonators with different sizes and a metallic background plane, separated by a dielectric. The near-perfect absorptions of dual, triple and quad peaks are persistent with polarization independence, and the effect of angle of incidence for both TE and TM modes was also elucidated. It was also found that the multiple-reflection theory was not suitable for explaining the absorption mechanism of our investigated structures. The results of this study are promising for the practical applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  2. D. Cheng, H. Chen, N. Zhang, J. Xie, and L. Deng, “Numerical study of a dualband negative index material with polarization independence in the middle infrared regime,” J. Opt. Soc. Am. B30(1), 224–228 (2013).
    [CrossRef]
  3. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express11(7), 755–760 (2003).
    [CrossRef] [PubMed]
  4. S. Y. Chiam, R. J. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett.97(19), 191906 (2010).
    [CrossRef]
  5. L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010).
    [CrossRef]
  6. R. J. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
    [CrossRef] [PubMed]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef] [PubMed]
  8. P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012).
    [CrossRef]
  9. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
    [CrossRef]
  10. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
    [CrossRef] [PubMed]
  11. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
    [CrossRef]
  12. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
    [CrossRef]
  13. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011).
    [CrossRef] [PubMed]
  14. B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
    [CrossRef]
  15. H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
    [CrossRef]
  16. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
    [CrossRef]
  17. J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
    [CrossRef]
  18. H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys.45(20), 205101 (2012).
    [CrossRef]
  19. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  20. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103 (2011).
  21. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
    [CrossRef] [PubMed]
  22. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express20(25), 27756–27765 (2012).
    [CrossRef] [PubMed]
  23. F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012).
    [CrossRef]
  24. D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, “Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances,” Eur. Phys. J. D63(3), 315–325 (2011).
    [CrossRef]
  25. H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express20(21), 24002–24009 (2012).
    [CrossRef] [PubMed]
  26. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  27. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
    [CrossRef]
  28. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  29. Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express18(22), 23458–23465 (2010).
    [CrossRef] [PubMed]
  30. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
    [CrossRef]
  31. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
    [CrossRef] [PubMed]
  32. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012).
    [CrossRef] [PubMed]
  33. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
    [CrossRef]
  34. J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
    [CrossRef]
  35. P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009).
    [CrossRef] [PubMed]
  36. Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
    [CrossRef]

2013 (1)

2012 (13)

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
[CrossRef] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012).
[CrossRef] [PubMed]

H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express20(21), 24002–24009 (2012).
[CrossRef] [PubMed]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express20(25), 27756–27765 (2012).
[CrossRef] [PubMed]

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
[CrossRef]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
[CrossRef]

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys.45(20), 205101 (2012).
[CrossRef]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012).
[CrossRef]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012).
[CrossRef]

2011 (6)

D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, “Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances,” Eur. Phys. J. D63(3), 315–325 (2011).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103 (2011).

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011).
[CrossRef] [PubMed]

2010 (7)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
[CrossRef]

R. J. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

S. Y. Chiam, R. J. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett.97(19), 191906 (2010).
[CrossRef]

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010).
[CrossRef]

2009 (3)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009).
[CrossRef] [PubMed]

2008 (3)

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

2005 (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

An, X.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Averitt, R. D.

Bettiol, A. A.

S. Y. Chiam, R. J. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett.97(19), 191906 (2010).
[CrossRef]

Bingham, C. M.

Brazhnikov, D. V.

D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, “Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances,” Eur. Phys. J. D63(3), 315–325 (2011).
[CrossRef]

Chen, H.

Chen, H. T.

Chen, S.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Cheng, D.

Cheng, H.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Cheong, H.

Chiam, S. Y.

S. Y. Chiam, R. J. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett.97(19), 191906 (2010).
[CrossRef]

Cui, T. J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Deng, L.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Ding, P.

P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009).
[CrossRef] [PubMed]

Dong, G.

Dong, Z. G.

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Duan, X.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Erni, D.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012).
[CrossRef]

Feng, Y.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Fu, J. H.

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Gong, J. Q.

H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
[CrossRef]

Gordon, O.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
[CrossRef]

Gu, C.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Gu, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

Han, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

Hao, Q.

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Hua, J.

Huang, C.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Huang, L.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103 (2011).

Huang, T. J.

Huang, Y.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
[CrossRef]

Jang, W. H.

Jiang, T.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Jiang, W. X.

Jin, X. R.

H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express20(21), 24002–24009 (2012).
[CrossRef] [PubMed]

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
[CrossRef]

Kim, D.

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

Kim, K. W.

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012).
[CrossRef]

Kiraly, B.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Lai, S.

Lam, V. D.

P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012).
[CrossRef]

Landy, N. I.

Lee, H. M.

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys.45(20), 205101 (2012).
[CrossRef]

Lee, J. C.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012).
[CrossRef]

Lee, Y. P.

P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012).
[CrossRef]

H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express20(21), 24002–24009 (2012).
[CrossRef] [PubMed]

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

Lei, S. Y.

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Li, H.

Li, J.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Li, L. W.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010).
[CrossRef]

Li, T.

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Li, Y. N.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010).
[CrossRef]

Liang, E. J.

P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009).
[CrossRef] [PubMed]

Liang, J. G.

H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
[CrossRef]

Lin, S. C.

Liu, H.

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Liu, L.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, Y.

Lu, Y. H.

Ma, H. F.

Martin, O. J. F.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010).
[CrossRef]

Meng, F. Y.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012).
[CrossRef]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Mosig, J. R.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010).
[CrossRef]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Nawaz, A. A.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Park, J. W.

H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express20(21), 24002–24009 (2012).
[CrossRef] [PubMed]

P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012).
[CrossRef]

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

Pendry, J. B.

Peng, X. Y.

Plum, E.

Qi, M. Q.

H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
[CrossRef]

Rhee, J. Y.

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express20(21), 24002–24009 (2012).
[CrossRef] [PubMed]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Shen, X.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Singh, R. J.

R. J. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

S. Y. Chiam, R. J. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett.97(19), 191906 (2010).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Sun, H.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
[CrossRef]

Sun, J.

Taichenachev, A. V.

D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, “Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances,” Eur. Phys. J. D63(3), 315–325 (2011).
[CrossRef]

Tao, H.

Teng, J. H.

Tian, J.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Tuong, P. V.

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012).
[CrossRef]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wang, B.

Wang, F. M.

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Wang, G. M.

H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
[CrossRef]

Wang, P.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Wen, G.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
[CrossRef]

Wu, J. C.

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys.45(20), 205101 (2012).
[CrossRef]

Wu, K.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012).
[CrossRef]

Wu, Q.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012).
[CrossRef]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
[CrossRef] [PubMed]

Xie, J.

Xu, H. X.

H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
[CrossRef]

Xu, M. X.

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Xu, Z. M.

H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
[CrossRef]

Yang, H.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Yang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

Ye, Y. Q.

Yeo, T. S.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010).
[CrossRef]

Yuan, Y. X.

P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009).
[CrossRef] [PubMed]

Yudin, V. I.

D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, “Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances,” Eur. Phys. J. D63(3), 315–325 (2011).
[CrossRef]

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

Zhang, D. H.

Zhang, L.

P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009).
[CrossRef] [PubMed]

Zhang, N.

Zhang, W.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

Zhang, W. L.

S. Y. Chiam, R. J. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett.97(19), 191906 (2010).
[CrossRef]

R. J. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

Zhang, X.

Zhao, J.

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Zhao, Y.

Zheludev, N. I.

Zheng, H. Y.

Zhong, J.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
[CrossRef]

Zhou, J.

Zhou, Q.

P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009).
[CrossRef] [PubMed]

Zhu, B.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Zhu, L.

Zhu, S. N.

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Appl. Phys. Lett. (8)

S. Y. Chiam, R. J. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett.97(19), 191906 (2010).
[CrossRef]

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett.101(15), 154102 (2012).
[CrossRef]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process.108(2), 329–335 (2012).
[CrossRef]

Comput. Mater. Sci. (1)

P. V. Tuong, J. W. Park, V. D. Lam, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Simplified perfect absorber structure,” Comput. Mater. Sci.61, 243–247 (2012).
[CrossRef]

Eur. Phys. J. D (1)

D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, “Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances,” Eur. Phys. J. D63(3), 315–325 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech.60(10), 3013–3022 (2012).
[CrossRef]

J. Opt. (1)

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys.45(20), 205101 (2012).
[CrossRef]

Nano Lett. (2)

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Opt. Express (10)

J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express11(7), 755–760 (2003).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

R. J. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011).
[CrossRef] [PubMed]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
[CrossRef] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012).
[CrossRef] [PubMed]

H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express20(21), 24002–24009 (2012).
[CrossRef] [PubMed]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express20(25), 27756–27765 (2012).
[CrossRef] [PubMed]

Phys. Rev. B (2)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B86(20), 205104 (2012).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi B. (1)

J. W. Park, X. R. Jin, P. V. Tuong, J. Y. Rhee, K. W. Kim, D. Kim, and Y. P. Lee, “Magnetic resonance of a highly symmetric metamaterial at microwave frequency,” Phys. Status Solidi B.249(4), 858–861 (2012).
[CrossRef]

Prog. Electromagnetics Res. (1)

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of the proposed structure of MM-A. Photos of the fabricated samples with (b) 2 types and (c) 3 types of structure.

Fig. 2
Fig. 2

(a) Simulated and (b) measured absorption spectra for the combinations of donuts.

Fig. 3
Fig. 3

(a) Simulated effective surface impedance of the triple-band absorption. (b) Distribution of the normalized induced current at a resonance frequency (6.5 GHz). (c) 3-dimensional distribution of the power loss density at each resonance frequency.

Fig. 4
Fig. 4

(a) Schematic diagram for multiple-reflection theory with associated parameters. (b) Amplitude of the reflection and the transmission coefficients at the air-dielectric interference for the system of only resonator array and dielectric (decoupled model). (c) Normalized surface current distribution of the decoupled model at 12.2 GHz.

Fig. 5
Fig. 5

Schematics of the proposed structure of MM-A for quad peaks (left) and photos of the fabricated sample (right).

Fig. 6
Fig. 6

(a) Simulated and (b) measured absorption spectra of quad-peak MM-A according to polarization.

Fig. 7
Fig. 7

(a) Simulated absorption spectra of single-donut structure by varying r, with w = 0.5 mm and p = 16 mm. (b) Absorption spectra for the combination of donuts

Fig. 8
Fig. 8

(a) Unit cell only with donuts 1 and 2. (b) Absorption spectra for 2 different p's. (c) and (d) Normalized surface current distributions at low-frequency peak.

Fig. 9
Fig. 9

Dependence of the simulated absorption spectra on incident angle for (a) TE mode and (b) TM mode. (c) The corresponding measured absorption spectra for TE mode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z(w)= (1+ S 11 ) 2 S 21 2 (1+ S 11 ) 2 + S 21 2 .

Metrics