Abstract

We describe an immersion grating (IG) with both low polarization-dependent loss (PDL) and high diffraction efficiency. Our immersion grating consists of a silicon (Si) prism and a Si grating coated with dielectric film. We analyze the effect of the refractive index of dielectric film and clarify the refractive index ratio between a Si grating and dielectric film. Selecting an adequate material for the dielectric film, we design the diffraction efficiency of TM polarization without changing that of TE polarization. The simulation results for the optimized IG show a PDL of 0.2 dB and diffraction efficiency of −0.4 dB. A prototype with high dispersion power provides a low PDL of 0.6 dB, while maintaining a high diffraction efficiency of −0.4 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).
  2. Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, and F. Shimokawa, “MEMS-based 1x43 Wavelength-Selective Switch with Flat Passband,” in Proceedings of 35th European Conference on Optical Communication, (Vienna, Austria, 2009), paper PD 1.9.
  3. G. Wiedemann and D. E. Jennings, “Immersion grating for infrared astronomy,” Appl. Opt.32(7), 1176–1178 (1993).
    [CrossRef] [PubMed]
  4. P. J. Kuzmenko, D. R. Ciarlo, and C. G. Stevens, “Fabrication and testing of a silicon immersion grating for infrared spectroscopy,” Proc. SPIE2266, 566–577 (1994).
    [CrossRef]
  5. J. P. Marsh, D. J. Mar, and D. T. Jaffe, “Production and evaluation of silicon immersion gratings for infrared astronomy,” Appl. Opt.46(17), 3400–3416 (2007).
    [CrossRef] [PubMed]
  6. E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
    [CrossRef] [PubMed]
  7. J. R. Marciante and D. H. Raguin, “High-efficiency, high-dispersion diffraction gratings based on total internal reflection,” Opt. Lett.29(6), 542–544 (2004).
    [CrossRef] [PubMed]
  8. Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
    [CrossRef]
  9. Rsoft Design Group, “DiffractMOD”, http://www.rsoftdesign.com .
  10. S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt.45(12), 2567–2571 (2006).
    [CrossRef] [PubMed]
  11. M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys.60(8), 2987–2989 (1986).
    [CrossRef]

2008 (1)

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

2007 (1)

2006 (1)

2004 (2)

2003 (1)

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

1994 (1)

P. J. Kuzmenko, D. R. Ciarlo, and C. G. Stevens, “Fabrication and testing of a silicon immersion grating for infrared spectroscopy,” Proc. SPIE2266, 566–577 (1994).
[CrossRef]

1993 (1)

1986 (1)

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys.60(8), 2987–2989 (1986).
[CrossRef]

Ciarlo, D. R.

P. J. Kuzmenko, D. R. Ciarlo, and C. G. Stevens, “Fabrication and testing of a silicon immersion grating for infrared spectroscopy,” Proc. SPIE2266, 566–577 (1994).
[CrossRef]

Fan, T. Y.

Frankel, B.

Fritze, M.

Fukuda, K.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys.60(8), 2987–2989 (1986).
[CrossRef]

Furukawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys.60(8), 2987–2989 (1986).
[CrossRef]

Hibino, Y.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

Himeno, A.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

Hoose, J.

Ikeda, Y.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Jaffe, D. T.

Jennings, D. E.

Kawakita, H.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Keast, C.

Kobayashi, N.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Kondo, S.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Kuzmenko, P. J.

P. J. Kuzmenko, D. R. Ciarlo, and C. G. Stevens, “Fabrication and testing of a silicon immersion grating for infrared spectroscopy,” Proc. SPIE2266, 566–577 (1994).
[CrossRef]

Mar, D. J.

Marciante, J. R.

Marsh, J. P.

Mizuno, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

Oguma, M.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

Ozawa, A.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Popov, E.

Pyo, T. S.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Rabe, S.

Raguin, D. H.

Ru, H.

Shibata, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

Shibayama, A.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Shimbo, M.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys.60(8), 2987–2989 (1986).
[CrossRef]

Stevens, C. G.

P. J. Kuzmenko, D. R. Ciarlo, and C. G. Stevens, “Fabrication and testing of a silicon immersion grating for infrared spectroscopy,” Proc. SPIE2266, 566–577 (1994).
[CrossRef]

Suzuki, K.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

Takahashi, H.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

Tanzawa, K.

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys.60(8), 2987–2989 (1986).
[CrossRef]

Terada, H.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Wang, S.

Wiedemann, G.

Yasui, C.

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Yost, D.

Zhang, Y.

Zhou, C.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.15, 138–140 (2003).

J. Appl. Phys. (1)

M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method,” J. Appl. Phys.60(8), 2987–2989 (1986).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

P. J. Kuzmenko, D. R. Ciarlo, and C. G. Stevens, “Fabrication and testing of a silicon immersion grating for infrared spectroscopy,” Proc. SPIE2266, 566–577 (1994).
[CrossRef]

Y. Ikeda, N. Kobayashi, H. Terada, A. Shibayama, A. Ozawa, C. Yasui, S. Kondo, T. S. Pyo, and H. Kawakita, “High-efficiency silicon immersion grating by electron-beam lithography,” Proc. SPIE7014, 701469, 701469-12 (2008).
[CrossRef]

Other (2)

Rsoft Design Group, “DiffractMOD”, http://www.rsoftdesign.com .

Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, and F. Shimokawa, “MEMS-based 1x43 Wavelength-Selective Switch with Flat Passband,” in Proceedings of 35th European Conference on Optical Communication, (Vienna, Austria, 2009), paper PD 1.9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) An IG based on TIR.

Fig. 2
Fig. 2

Electrical field intensity distribution in and above the cross-section of the Si IG for (a) TE and (b) TM and of the Si IG coated with dielectric film for (c) TE and (d) TM. The white line is the boundary between Si grating and air.

Fig. 3
Fig. 3

New IG coated with dielectric film.

Fig. 4
Fig. 4

PDL vs. refractive index ratio (orange line). The green line is the boundary of the TIR condition.

Fig. 5
Fig. 5

Diffraction efficiency maps of the Si IG for (a) TE and (b) TM and the Si IG coated with dielectric film for (c) TE and (d) TM.

Fig. 6
Fig. 6

The region of less than −1 dB diffraction efficiency at wavelengths of 1.530 and 1.565 μm for (a) TE and (b) TM polarizations. (c) The overlap region of (a) and (b).

Fig. 7
Fig. 7

(a) TEM image of the Si grating coated with SiN (sample A) and (b) the model of trapezoidal grating.

Fig. 8
Fig. 8

Photograph of the IG of sample A.

Fig. 9
Fig. 9

Output profiles of optical intensity of three wavelengths for (a) TE and (b) TM polarizations (sample A). The reference (black) shows the output profile without samples and contains both TE and TM.

Fig. 10
Fig. 10

Launch angle vs. wavelength. The circles are experimental results and lines are designed values. Black, dark gray, gray show sample A, B, and C, respectively.

Fig. 11
Fig. 11

Diffraction efficiency vs. wavelength in the C band. (a), (c) and (e) data for samples A, B and C, respectively. (b), (d) and (f) data for samples D, E, and F. The circles are the measurement results, and the dashed and solid lines are the simulation results for the designed grating model and the actual grating model, respectively. Green and blue show TE and TM polarizations, respectively.

Fig. 12
Fig. 12

Comparison between rectangular and trapezoidal structure in diffraction efficiency of sample A. The dashed-dotted and solid lines are the simulation results for the rectangular grating model and trapezoidal grating model, respectively. Green and blue show TE and TM polarizations, respectively.

Tables (4)

Tables Icon

Table 1 Designed Grating Profiles

Tables Icon

Table 2 Expected Diffraction Efficiency (TE) and PDL of the Designed Gratings

Tables Icon

Table 3 Fabricated Grating Profiles

Tables Icon

Table 4 Diffraction Efficiency and PDL of the Fabricated Gratings

Metrics