Abstract

We demonstrate the supercontinuum (SC) generation in a suspended-core As2S3 chalcogenide microstructured optical fiber (MOF). The variation of SC is investigated by changing the fiber length, pump peak power and pump wavelength. In the case of long fibers (20 and 40 cm), the SC ranges are discontinuous and stop at the wavelengths shorter than 3500 nm, due to the absorption of fiber. In the case of short fibers (1.3 and 2.4 cm), the SC ranges are continuous and can extend to the wavelengths longer than 4 μm. The SC broadening is observed when the pump peak power increases from 0.24 to 1.32 kW at 2500 nm. The SC range increases with the pump wavelength changing from 2200 to 2600 nm, corresponding to the dispersion of As2S3 MOF from the normal to anomalous region. The SC generation is simulated by the generalized nonlinear Schrödinger equation. The simulation includes the SC difference between 1.3 and 2.4 cm long fiber by 2500 nm pumping, the variation of SC with pump peak power in 2.4 cm long fiber, and the variation of SC with pump wavelength in 1.3 cm long fiber. The simulation agrees well with the experiment.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol.12(7), 854–858 (2001).
    [CrossRef]
  2. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75(1), 325–342 (2003).
    [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001).
    [CrossRef] [PubMed]
  4. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett.27(22), 2010–2012 (2002).
    [CrossRef] [PubMed]
  5. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm,” Opt. Lett.32(3), 307–309 (2007).
    [CrossRef] [PubMed]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  7. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
    [CrossRef]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  9. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  10. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett.25(19), 1418–1420 (2000).
    [CrossRef] [PubMed]
  11. W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt.51(8), 1071–1075 (2012).
    [CrossRef] [PubMed]
  12. W. Gao, M. Liao, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power,” Appl. Opt.51(13), 2346–2350 (2012).
    [CrossRef] [PubMed]
  13. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
    [CrossRef]
  14. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
    [CrossRef] [PubMed]
  15. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004).
    [CrossRef] [PubMed]
  16. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
    [CrossRef]
  17. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express20(2), 1141–1150 (2012).
    [CrossRef] [PubMed]
  18. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
    [CrossRef] [PubMed]
  19. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  20. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  21. X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012).
    [CrossRef] [PubMed]
  22. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express15(24), 15776–15781 (2007).
    [CrossRef] [PubMed]
  23. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
    [CrossRef] [PubMed]
  24. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers,” Opt. Lett.36(12), 2351–2353 (2011).
    [CrossRef] [PubMed]
  25. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
    [CrossRef] [PubMed]
  26. F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
    [CrossRef]
  27. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
    [CrossRef]
  28. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  29. S. Dekker, C. Xiong, E. Magi, A. C. Judge, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, D. J. Moss, and B. J. Eggleton, “Broadband Low Power Super-continuum Generation in As2S3 Chalcogenide Glass Fiber Nanotapers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper CMM6.
  30. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
    [CrossRef] [PubMed]
  31. W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
    [CrossRef]
  32. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
    [CrossRef] [PubMed]
  33. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
    [CrossRef] [PubMed]
  34. Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett.37(11), 1889–1891 (2012).
    [CrossRef] [PubMed]
  35. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett.37(22), 4639–4641 (2012).
    [CrossRef] [PubMed]
  36. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012).
    [CrossRef] [PubMed]
  37. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012).
    [CrossRef] [PubMed]
  38. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
    [CrossRef]
  39. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
    [CrossRef] [PubMed]
  40. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett.35(17), 2907–2909 (2010).
    [CrossRef] [PubMed]
  41. M. Bernier, M. El-Amraoui, J. F. Couillard, Y. Messaddeq, and R. Vallée, “Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm,” Opt. Lett.37(18), 3900–3902 (2012).
    [CrossRef] [PubMed]
  42. G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Academic Press, 2007), Chap. 2.
  43. T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B28(9), 2284–2290 (2011).
    [CrossRef]
  44. C. Xiong, E. Magi, F. Luan, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Raman response in chalcogenide As2S3 fiber,” in 14th OptoElectronics and Communications Conference, Sydney, Australia, 13–17 July 2009, paper TuA2.

2012 (11)

W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt.51(8), 1071–1075 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power,” Appl. Opt.51(13), 2346–2350 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express20(2), 1141–1150 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012).
[CrossRef] [PubMed]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett.37(11), 1889–1891 (2012).
[CrossRef] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett.37(22), 4639–4641 (2012).
[CrossRef] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012).
[CrossRef] [PubMed]

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
[CrossRef]

M. Bernier, M. El-Amraoui, J. F. Couillard, Y. Messaddeq, and R. Vallée, “Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm,” Opt. Lett.37(18), 3900–3902 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (5)

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett.35(17), 2907–2909 (2010).
[CrossRef] [PubMed]

2009 (3)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

2008 (4)

2007 (2)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

2004 (1)

2003 (2)

2002 (1)

2001 (2)

2000 (2)

1998 (1)

F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

1996 (1)

Abouraddy, A. F.

Adam, J. L.

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett.35(17), 2907–2909 (2010).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Ahmed, N.

Asimakis, S.

Atkin, D. M.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Barthélémy, A.

F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Bernier, M.

Birks, T. A.

Bony, P.-Y.

Bookey, H. T.

Boppart, S. A.

Bourdon, P.

Brilland, L.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Byer, R. L.

Calvez, L.

Canat, G.

Cerullo, G.

Chartier, T.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Chiodo, N.

Choi, D.-Y.

Chrissanthopoulos, A.

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Cordeiro, C. M. B.

Couillard, J. F.

Coulombier, Q.

Cronin-Golomb, M.

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75(1), 325–342 (2003).
[CrossRef]

De Angelis, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Dekker, S. A.

Delfyett, P. J.

Désévédavy, F.

Dianov, E. M.

Dolinar, S.

Domachuk, P.

Duan, Z.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Duhant, M.

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

El Amraoui, M.

El-Amraoui, M.

Fatome, J.

Finazzi, V.

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Fortier, C.

Frampton, K.

Fu, L.

Fujimoto, J. G.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Gadret, G.

Gai, X.

Gao, W.

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express20(2), 1141–1150 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power,” Appl. Opt.51(13), 2346–2350 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt.51(8), 1071–1075 (2012).
[CrossRef] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

George, A. K.

Ghanta, R. K.

Hartl, I.

Haus, H. A.

Hu, J.

Huang, H.

Hudson, D. D.

Ippen, E. P.

Jackson, S. D.

Jha, A.

Judge, A. C.

Jules, J. C.

Jules, J.-C.

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
[CrossRef]

Kar, A. K.

Kawashima, H.

Kibler, B.

Kito, C.

W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Knight, J. C.

Ko, T. H.

Kohoutek, T.

Koizumi, F.

Lamont, M. R. E.

Lasri, J.

Leneindre, L.

F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Li, E.

Li, X. D.

Liao, M.

Lucasa, J.

F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Marandi, A.

Marks, D. L.

Marquez, M. P.

Mechin, D.

Menyuk, C. R.

Messaddeq, Y.

Moll, K. D.

Monro, T. M.

Moore, R. C.

Mouawad, O.

Nguyen, D.

Nguyen, T. N.

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Ohishi, Y.

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express20(2), 1141–1150 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power,” Appl. Opt.51(13), 2346–2350 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt.51(8), 1071–1075 (2012).
[CrossRef] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B28(9), 2284–2290 (2011).
[CrossRef]

W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Oldenburg, A. L.

Omenetto, F. G.

Osellame, R.

Petropoulos, P.

Piracha, M. U.

Plotnichenko, V. G.

Polacchini, C. F.

Psaila, N. D.

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
[CrossRef]

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Quemard, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Ranka, J. K.

Ren, Y.

Renard, W.

Renversez, G.

Reynolds, J. J.

Richardson, D. J.

Roelens, M. A. F.

Rudy, C. W.

Russell, P. St. J.

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett.35(17), 2907–2909 (2010).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Savelii, I.

Shabahang, S.

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett.35(17), 2907–2909 (2010).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Shen, S.

Shiosaka, T. W.

Skripatchev, I.

Smektala, F.

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
[CrossRef]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Stentz, A. J.

Suzuki, T.

W. Gao, M. Liao, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power,” Appl. Opt.51(13), 2346–2350 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express20(2), 1141–1150 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt.51(8), 1071–1075 (2012).
[CrossRef] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B28(9), 2284–2290 (2011).
[CrossRef]

W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Sysoliatin, A.

Szpulak, M.

Tao, G.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

Thomson, R. R.

Thorpe, M. J.

Toupin, P.

Troles, J.

Tur, M.

Vallée, R.

Vodopyanov, K. L.

Wang, A.

Wang, R.

White, R. T.

Willner, A. E.

Windeler, R. S.

Wolchover, N. A.

Wong, W. S.

Yan, X.

W. Gao, M. Liao, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power,” Appl. Opt.51(13), 2346–2350 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express20(2), 1141–1150 (2012).
[CrossRef] [PubMed]

W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt.51(8), 1071–1075 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B28(9), 2284–2290 (2011).
[CrossRef]

W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Yan, Y.

Yang, J.-Y.

Yang, L.

Yang, Z.

Yannopoulos, S. N.

Ye, J.

Yeom, D.-I.

Yu, C. X.

Yue, Y.

Zhang, L.

Appl. Opt. (2)

Appl. Phys. Express (1)

W. Gao, M. Liao, X. Yan, C. Kito, T. Kohoutek, T. Suzuki, M. El-Amraoui, J.-C. Jules, G. Gadret, F. Désévédavy, F. Smektala, and Y. Ohishi, “Visible light generation and its influence on supercontinuum in chalcogenide As2S3 microstructured optical fiber,” Appl. Phys. Express4(10), 102601 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

J. Non-Cryst. Solids (2)

F. Smektala, C. Quemard, L. Leneindre, J. Lucasa, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Nat. Photonics (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

Opt. Express (12)

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express15(24), 15776–15781 (2007).
[CrossRef] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express20(2), 1141–1150 (2012).
[CrossRef] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012).
[CrossRef] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012).
[CrossRef]

Opt. Lett. (16)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett.25(19), 1418–1420 (2000).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001).
[CrossRef] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett.27(22), 2010–2012 (2002).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett.35(17), 2907–2909 (2010).
[CrossRef] [PubMed]

D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm,” Opt. Lett.32(3), 307–309 (2007).
[CrossRef] [PubMed]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers,” Opt. Lett.36(12), 2351–2353 (2011).
[CrossRef] [PubMed]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett.37(11), 1889–1891 (2012).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012).
[CrossRef] [PubMed]

M. Bernier, M. El-Amraoui, J. F. Couillard, Y. Messaddeq, and R. Vallée, “Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm,” Opt. Lett.37(18), 3900–3902 (2012).
[CrossRef] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett.37(22), 4639–4641 (2012).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75(1), 325–342 (2003).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other (3)

S. Dekker, C. Xiong, E. Magi, A. C. Judge, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, D. J. Moss, and B. J. Eggleton, “Broadband Low Power Super-continuum Generation in As2S3 Chalcogenide Glass Fiber Nanotapers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper CMM6.

G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Academic Press, 2007), Chap. 2.

C. Xiong, E. Magi, F. Luan, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Raman response in chalcogenide As2S3 fiber,” in 14th OptoElectronics and Communications Conference, Sydney, Australia, 13–17 July 2009, paper TuA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Cross section of the As2S3 chalcogenide MOF measured by an optical microscope. (b) Simulated chromatic dispersion of the As2S3 MOF. Inset: simulated fundamental mode-field profile at 2500 nm.

Fig. 2
Fig. 2

Experimental setup for SC generation in the As2S3 MOF.

Fig. 3
Fig. 3

Measured SCs in the As2S3 MOF with the fiber length of (a) 40, (b) 20, (c) 10, (d) 2.4, and (e) 1.3 cm at the pump wavelength of 2500 nm and pump peak power of 1.32 kW.

Fig. 4
Fig. 4

Measured SCs in 2.4 cm long As2S3 MOF with the pump peak power increasing from 0.24 to 1.32 kW at the pump wavelength of 2500 nm.

Fig. 5
Fig. 5

Measured SCs in As2S3 MOF at different pump wavelengths from 2200 to 2600 nm. (a)-(d): 1.3 cm long fiber; (e)-(f): 2.4 cm long fiber.

Fig. 6
Fig. 6

Simulated SCs in the As2S3 MOF with the fiber lengths of 1.3 and 2.4 cm at the pump wavelength of 2500 nm and pump peak power of 1.32 kW.

Fig. 7
Fig. 7

(a) Simulated SCs in 2.4 cm long As2S3 MOF with different pump peak powers from 0.24 to 1.32 kW at the pump wavelength of 2500 nm. (b) Simulated SCs in 1.3 cm long As2S3 MOF at different pump wavelengths.

Tables (1)

Tables Icon

Table 1 Parameters Used for Simulation of the SC Generation in As2S3 MOF

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A k2 i k+1 k! β k k A T k =iγ(1+ i ω 0 T )(A (z,T) + R( T ' ) | A(z,T T ' ) | 2 d T ' ),
R(t)=(1 f R )δ(t)+ f R h R (t),
h R (t)= τ 1 2 + τ 2 2 τ 1 τ 2 2 exp(t/ τ 2 )sin(t/ τ 1 ).

Metrics