Abstract

Magneto-optical (MO) effect can break the reciprocal propagation of an optical wave along a MO-metal interface. We show that this nonreciprocal property also influences the guided modes in metal-MO-metal waveguides. Especially, the field profiles of the guided modes are neither symmetric nor anti-symmetric, but asymmetric. We then study the resonant optical transmission through a thin metal film with subwavelength MO slits. Magnetic field changes the transmission spectra of the structure, and a MO-induced transparent window is open, where the MO medium becomes extremely anisotropic. The guided-mode mediated high transmission is associated with an asymmetric field distribution and a circling energy flux.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Battula, S. Chen, Y. Lu, R. J. Knize, and K. Reinhardt, “Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field,” Opt. Lett.32, 2692–2694 (2007).
    [CrossRef] [PubMed]
  2. A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express15, 6612–6622 (2007).
    [CrossRef] [PubMed]
  3. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett.98, 077401 (2007).
    [CrossRef] [PubMed]
  4. Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
    [CrossRef]
  5. H. Yin and P. M. Hui, “Controlling enhanced transmission through semiconductor gratings with subwavelength slits by a magnetic field: Numerical and analytical results,” Appl. Phys. Lett.95, 011115 (2009).
    [CrossRef]
  6. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
    [CrossRef] [PubMed]
  7. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
    [CrossRef] [PubMed]
  8. H. Zhu and C. Jiang, “Nonreciprocal extraordinary optical transmission through subwavelength slits in metallic film,” Opt. Lett.36, 1308–1310 (2011).
    [CrossRef] [PubMed]
  9. J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.89, 251115 (2006).
    [CrossRef]
  10. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008).
    [CrossRef] [PubMed]
  11. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
    [CrossRef] [PubMed]
  12. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačic̀, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett.100, 013905 (2008).
    [CrossRef] [PubMed]
  13. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999).
    [CrossRef]
  14. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1289 (2007).
    [CrossRef]
  15. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
    [CrossRef]
  16. D. J. Bergman and Y. M. Strelniker, “Calculation of strong-field magnetoresistance in some periodic composites,” Phys. Rev. B49, 16256–16268 (1994).
    [CrossRef]
  17. Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B59, R12763–R12766 (1999).
    [CrossRef]
  18. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
    [CrossRef] [PubMed]
  19. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013).
    [CrossRef] [PubMed]

2013 (1)

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013).
[CrossRef] [PubMed]

2011 (2)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

H. Zhu and C. Jiang, “Nonreciprocal extraordinary optical transmission through subwavelength slits in metallic film,” Opt. Lett.36, 1308–1310 (2011).
[CrossRef] [PubMed]

2010 (1)

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

2009 (1)

H. Yin and P. M. Hui, “Controlling enhanced transmission through semiconductor gratings with subwavelength slits by a magnetic field: Numerical and analytical results,” Appl. Phys. Lett.95, 011115 (2009).
[CrossRef]

2008 (5)

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008).
[CrossRef] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačic̀, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett.100, 013905 (2008).
[CrossRef] [PubMed]

2007 (5)

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1289 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett.98, 077401 (2007).
[CrossRef] [PubMed]

A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express15, 6612–6622 (2007).
[CrossRef] [PubMed]

A. Battula, S. Chen, Y. Lu, R. J. Knize, and K. Reinhardt, “Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field,” Opt. Lett.32, 2692–2694 (2007).
[CrossRef] [PubMed]

2006 (1)

J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.89, 251115 (2006).
[CrossRef]

1999 (2)

Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B59, R12763–R12766 (1999).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999).
[CrossRef]

1994 (1)

D. J. Bergman and Y. M. Strelniker, “Calculation of strong-field magnetoresistance in some periodic composites,” Phys. Rev. B49, 16256–16268 (1994).
[CrossRef]

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Baryshev, A. V.

Battula, A.

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Belotelov, V. I.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett.98, 077401 (2007).
[CrossRef] [PubMed]

Bergman, D. J.

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B59, R12763–R12766 (1999).
[CrossRef]

D. J. Bergman and Y. M. Strelniker, “Calculation of strong-field magnetoresistance in some periodic composites,” Phys. Rev. B49, 16256–16268 (1994).
[CrossRef]

Caglayan, H.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013).
[CrossRef] [PubMed]

Chen, S.

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačic̀, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett.100, 013905 (2008).
[CrossRef] [PubMed]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013).
[CrossRef] [PubMed]

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett.98, 077401 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
[CrossRef]

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Engheta, N.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008).
[CrossRef] [PubMed]

Fedyanin, A. A.

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1289 (2007).
[CrossRef]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
[CrossRef]

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Granovsky, A. B.

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
[CrossRef] [PubMed]

Hui, P. M.

H. Yin and P. M. Hui, “Controlling enhanced transmission through semiconductor gratings with subwavelength slits by a magnetic field: Numerical and analytical results,” Appl. Phys. Lett.95, 011115 (2009).
[CrossRef]

Inoue, M.

Jiang, C.

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačic̀, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett.100, 013905 (2008).
[CrossRef] [PubMed]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express15, 6612–6622 (2007).
[CrossRef] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.89, 251115 (2006).
[CrossRef]

Kivshar, Y. S.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

Knize, R. J.

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Lu, Y.

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999).
[CrossRef]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Polman, A.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999).
[CrossRef]

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
[CrossRef] [PubMed]

Reinhardt, K.

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Soljacic`, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačic̀, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett.100, 013905 (2008).
[CrossRef] [PubMed]

Strelniker, Y. M.

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B59, R12763–R12766 (1999).
[CrossRef]

D. J. Bergman and Y. M. Strelniker, “Calculation of strong-field magnetoresistance in some periodic composites,” Phys. Rev. B49, 16256–16268 (1994).
[CrossRef]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008).
[CrossRef] [PubMed]

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013).
[CrossRef] [PubMed]

Wang, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačic̀, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett.100, 013905 (2008).
[CrossRef] [PubMed]

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Yin, H.

H. Yin and P. M. Hui, “Controlling enhanced transmission through semiconductor gratings with subwavelength slits by a magnetic field: Numerical and analytical results,” Appl. Phys. Lett.95, 011115 (2009).
[CrossRef]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008).
[CrossRef] [PubMed]

Zhu, H.

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett.98, 077401 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.89, 251115 (2006).
[CrossRef]

H. Yin and P. M. Hui, “Controlling enhanced transmission through semiconductor gratings with subwavelength slits by a magnetic field: Numerical and analytical results,” Appl. Phys. Lett.95, 011115 (2009).
[CrossRef]

Nature (London) (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
[CrossRef]

Nature Nanotechnology (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotechnology6, 370–376 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (3)

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
[CrossRef]

D. J. Bergman and Y. M. Strelniker, “Calculation of strong-field magnetoresistance in some periodic composites,” Phys. Rev. B49, 16256–16268 (1994).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B59, R12763–R12766 (1999).
[CrossRef]

Phys. Rev. Lett. (8)

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110, 013902 (2013).
[CrossRef] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett.98, 077401 (2007).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008).
[CrossRef] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačic̀, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett.100, 013905 (2008).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999).
[CrossRef]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1289 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A single MO-metal interface, and (b) a metal-MO-metal waveguide. With a y-direction applied magnetic field B, the right-handed orthogonal vector triplet frames of (n±, B, k±) of the two MO-metal interfaces are plotted.

Fig. 2
Fig. 2

Transmission spectra at different magnetic field B, for ωB = 0 (solid line), 0.1ωp (short dashed line) and 0.2ωp (short dotted line), respectively. Inset is the structure under investigation.

Fig. 3
Fig. 3

Distributions of field intensity and energy flux (Poynting vectors) at the transmission peaks of (a) 2.065 cm when ωB = 0, and (b) 2.051 cm when ωB = 0.2ωp, respectively.

Fig. 4
Fig. 4

Distributions of field intensity and energy flux at the MO-induced transparent peak of 2.350 cm, for ωB = 0.2ωp.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

H y = e i k z + i ω t { H 1 e α ( x d 2 ) , x > + d 2 H 2 e β x + H 3 e + β x , + d 2 > x > d 2 H 4 e + α ( x + d 2 ) , x < d 2
ε ¯ ¯ = ( ε 0 j γ 0 ε | | 0 j γ 0 ε ) .
α 2 = k 2 ε metal k 0 2 ,
β 2 = k 2 ε 2 γ 2 ε k 0 2 ,
H 1 = H 2 e β d 2 + H 3 e + β d 2 ,
H 4 = H 2 e + β d 2 + H 3 e β d 2 ,
α ε metal H 1 = γ k + β ε ε 2 γ 2 H 2 e β d 2 + γ k β ε ε 2 γ 2 H 3 e + β d 2 ,
α ε metal H 4 = γ k + β ε ε 2 γ 2 H 2 e + β d 2 + γ k β ε ε 2 γ 2 H 3 e β d 2 ,
[ ( C k + B ) e β d 2 ( C k A ) e + β d 2 ( C k + A ) e + β d 2 ( C k B ) e β d 2 ] [ H 2 H 3 ] = 0 ,
A = β ε ε 2 γ 2 + α ε metal ,
B = β ε ε 2 γ 2 α ε metal ,
C = γ ε 2 γ 2 .
e 2 β d = B 2 C 2 k 2 A 2 C 2 k 2 .
I + I = A + C k A C k B C k B + C k ,
k = ε k 0 , β = k 0 γ / ε , H 2 = 1 , H 3 = 0 ,
k = ε k 0 , β = + k 0 γ / ε , H 2 = 0 , H 3 = 1 ,
H y = H 0 e i ε k 0 z + i ω t e x L
L = ε k 0 γ .
ε = 1 ω p 2 ω 2 ω B 2 + j ω 2 Γ ,
γ = ω B ω p 2 ω ( ω 2 ω B 2 + j ω 2 Γ ) ,
ε | | = 1 ω p 2 ω 2 + j ω 2 Γ ,

Metrics