Abstract

We present theoretical and experimental study of a continuous-wave, two-crystal, singly-resonant optical parametric oscillator (T-SRO) comprising two identical 30-mm-long crystals of MgO:sPPLT in a four- mirror ring cavity and pumped with two separate pump beams in the green. The idler beam after each crystal is completely out-coupled, while the signal radiation is resonant inside the cavity. Solving the coupled amplitude equations under undepleted pump approximation, we calculate the maximum threshold reduction, parametric gain acceptance bandwidth and closest possible attainable wavelength separation in arbitrary dual-wavelength generation and compare with the experimental results. Although the T-SRO has two identical crystals, the acceptance bandwidth of the device is equal to that of a single-crystal SRO. Due to the division of pump power in two crystals, the T-SRO can handle higher total pump power while lowering crystal damage risk and thermal effects. We also experimentally verify the high power performance of such scheme, providing a total output power of 6.5 W for 16.2 W of green power at 532 nm. We verified coherent energy coupling between the intra-cavity resonant signal waves resulting Raman spectral lines. Based on the T-SRO scheme, we also report a new technique to measure the temperature acceptance bandwidth of the single-pass parametric amplifier across the OPO tuning range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ebrahim-zadeh and M. H. Dunn, “Optical parametric oscillators” in Handbook of Optics (OSA, McGraw-Hill, 2000), vol. IV, Chap. 22, pp. 1–72.
  2. M. Ebrahim-Zadeh, “Continuous-wave optical parametric oscillators” in Handbook of Optics (OSA, McGraw-Hill, 2010), vol. IV, Chap. 17, pp. 1–33.
  3. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intra-cavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett.32(10), 1284–1286 (2007).
    [CrossRef] [PubMed]
  4. I. Breunig, R. Sowade, and K. Buse, “Limitations of the tunability of dual-crystal optical parametric oscillators,” Opt. Lett.32(11), 1450–1452 (2007).
    [CrossRef] [PubMed]
  5. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett.35(10), 1698–1700 (2010).
    [CrossRef] [PubMed]
  6. G. K. Samanta and M. Ebrahim-Zadeh, “Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator,” Opt. Lett.36(16), 3033–3035 (2011).
    [CrossRef] [PubMed]
  7. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  8. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett.28(3), 194–196 (2003).
    [CrossRef] [PubMed]
  9. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32(4), 400–402 (2007).
    [CrossRef] [PubMed]
  10. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express17(16), 13711–13726 (2009).
    [CrossRef] [PubMed]
  11. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express19(12), 11152–11169 (2011).
    [CrossRef] [PubMed]
  12. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, “1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32(17), 2623–2625 (2007).
    [CrossRef] [PubMed]
  13. U. Bäder, J.-P. Meyn, J. Bartschke, T. Weber, A. Borsutzky, R. Wallenstein, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Nanosecond periodically poled lithium niobate optical parametric generator pumped at 532 nm by a single-frequency passively Q-switched Nd:YAG laser,” Opt. Lett.24(22), 1608–1610 (1999).
    [CrossRef] [PubMed]
  14. G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling,” Opt. Express16(10), 6883–6888 (2008).
    [CrossRef] [PubMed]
  15. A. Henderson and R. Stafford, “Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator,” Opt. Lett.32(10), 1281–1283 (2007).
    [CrossRef] [PubMed]
  16. A. V. Okishev and J. D. Zuegel, “Intra-cavity-pumped Raman laser action in a mid IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator,” Opt. Express14(25), 12169–12173 (2006).
    [CrossRef] [PubMed]
  17. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express17(1), 87–91 (2009).
    [CrossRef] [PubMed]
  18. T.-H. My, O. Robin, O. Mhibik, C. Drag, and F. Bretenaker, “Stimulated Raman scattering in an optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3.,” Opt. Express17(7), 5912–5918 (2009).
    [CrossRef] [PubMed]

2011 (2)

2010 (1)

2009 (3)

2008 (1)

2007 (5)

2006 (1)

2003 (1)

1999 (1)

Bäder, U.

Bartschke, J.

Batchko, R. G.

Blau, P.

Borsutzky, A.

Bretenaker, F.

Breunig, I.

Bruner, A.

Buse, K.

Byer, R. L.

Devi, K.

Dierolf, V.

Drag, C.

Ebrahim-Zadeh, M.

Eger, D.

Fayaz, G. R.

Fejer, M. M.

Henderson, A.

Ito, H.

Katz, M.

Kiessling, J.

Kumar, S. C.

Meyn, J.-P.

Mhibik, O.

Minamide, H.

My, T.-H.

Notake, T.

Ohno, S.

Okishev, A. V.

Oron, M. B.

Robin, O.

Ruschin, S.

Samanta, G. K.

Schaar, J. E.

Sowade, R.

Stafford, R.

Sun, Z.

Tang, M.

Vodopyanov, K. L.

Wallenstein, R.

Wang, Y.

Weber, T.

Zuegel, J. D.

Opt. Express (6)

Opt. Lett. (9)

G. K. Samanta and M. Ebrahim-Zadeh, “Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator,” Opt. Lett.36(16), 3033–3035 (2011).
[CrossRef] [PubMed]

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett.35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32(4), 400–402 (2007).
[CrossRef] [PubMed]

A. Henderson and R. Stafford, “Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator,” Opt. Lett.32(10), 1281–1283 (2007).
[CrossRef] [PubMed]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intra-cavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett.32(10), 1284–1286 (2007).
[CrossRef] [PubMed]

I. Breunig, R. Sowade, and K. Buse, “Limitations of the tunability of dual-crystal optical parametric oscillators,” Opt. Lett.32(11), 1450–1452 (2007).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, “1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32(17), 2623–2625 (2007).
[CrossRef] [PubMed]

U. Bäder, J.-P. Meyn, J. Bartschke, T. Weber, A. Borsutzky, R. Wallenstein, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Nanosecond periodically poled lithium niobate optical parametric generator pumped at 532 nm by a single-frequency passively Q-switched Nd:YAG laser,” Opt. Lett.24(22), 1608–1610 (1999).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett.28(3), 194–196 (2003).
[CrossRef] [PubMed]

Other (3)

M. Ebrahim-zadeh and M. H. Dunn, “Optical parametric oscillators” in Handbook of Optics (OSA, McGraw-Hill, 2000), vol. IV, Chap. 22, pp. 1–72.

M. Ebrahim-Zadeh, “Continuous-wave optical parametric oscillators” in Handbook of Optics (OSA, McGraw-Hill, 2010), vol. IV, Chap. 17, pp. 1–33.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic diagram of the SRO along with the notations used in the paper. Green, red and brown colors represent pump, signal and idler, respectively.

Fig. 2
Fig. 2

Theoretical wavelength acceptance bandwidth of the S-SRO at three different crystal temperatures across the tuning range.

Fig. 3
Fig. 3

Theoretically estimated normalized parametric gain of the S-SRO (black), D-SRO (red) and T-SRO (blue) as a function of phase-mismatch.

Fig. 4
Fig. 4

Calculated gain of the S-SRO (black), D-SRO (red) and T-SRO (blue) versus signal wavelength at different combination of crystals’ temperatures, (a) T1 = T2 = 91°C, (b) T1 = 91°C, T2 = 92°C and (c) T1 = 91°C, T2 = 93°C. Fig (b) is zoomed in the right side for further clarity.

Fig. 5
Fig. 5

Experimental design of the T-SRO. λ/2, half-wave plate; PB1-2, polarizing beam-splitter; L1-2, lens; M, mirror; X1-2, MgO:sPPLT crystal in oven. P1-2, pump power to the crystals X1-2. The pump beam can be from the same laser or from two different lasers. For out-coupling of the intra-cavity signal radiation we can replace either of mirrors M2 or M4 with an output coupler having transmission typically 1-1.5%.

Fig. 6
Fig. 6

Temperature acceptance bandwidth at different crystal temperatures across the tuning range of the S-SRO. The pump power to the crystal X1 is P1 = 5 W, while the pump power to the crystal X2 is P2 = 1 W. The offset between the crystal temperatures has been corrected by subtracting 2.5°C from the experimentally measured T2.

Fig. 7
Fig. 7

Temperature acceptance bandwidth at different pump power at crystal temperature of 192°C.

Fig. 8
Fig. 8

Closest possible proximity of the dual signal wavelengths generated by the two crystals in T-SRO configuration.

Fig. 9
Fig. 9

Signal spectra of the two crystals X1 and X2 of the T-SRO for different combinations of their temperatures (T1,T2). Both the crystals are pumped with equal pump powers P1 = P2 = 5W.

Fig. 10
Fig. 10

Signal spectra of the T-SRO for different combinations crystal temperatures, (a) T1 = 125.5°C, T2 = 128°C and (b) T1 = 139°C, T2 = 141.5°C across the tuning range. Crystal X1 is pumped with power P1 = 5.2 W well above the threshold while crystal X2 is pumped at P2 = 1 W well below threshold.

Fig. 11
Fig. 11

Variation of Idler power of crystal X2 as a function of pump power across the tuning range with the seed from crystal X1.

Fig. 12
Fig. 12

Variation of idler power generated by X2 as a function of pump power for different intra-cavity signal seed powers. The crystal temperatures are T1 = 139°C, T2 = 141.5°C, corresponding to signal (idler) wavelength of 913 nm (1275 nm).

Fig. 13
Fig. 13

Power scaling of the T-SRO and S-SRO as a function of total input pump powers for crystal temperatures T = 139°C and T2 = 141.5°C corresponding to signal (idler) wavelength 913 nm (1275 nm). Solid curves are guide to the eye.

Fig. 14
Fig. 14

Variation of total output power, out-coupled signal power and idler power of the T-SRO as a function of pump power at crystal temperatures T1 = 70.5°C and T2 = 73°C. Corresponding signal (idler) wavelength is 980 nm (1163.7 nm). Solid curves are guide to the eye.

Fig. 15
Fig. 15

Variation of total output power of the T-SRO across the tuning range. Both the crystals are pumped with equal amount of pump power (P1 = P2 = 8.1 W). Solid curves are guide to the eye.

Tables (1)

Tables Icon

Table 1 Comparative study of the D-SRO and T-SRO configurations

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d A s dz =j γ s A p A i * e jΔkz
d A i * dz =j γ i A p * A s e jΔkz
| A p,s,i | 2 = I p,s,i 2 ε 0 n p,s,i c = P p,s,i π w p,s,i 2 ε 0 n p,s,i c ,
A s1,2 ( L 1,2 ) e j Δ k 1,2 L ,1,2 2 =( cosh( g 1,2 L 1,2 )+ jΔ k 1,2 2 g 1,2 sinh( g 1,2 L 1,2 ) ) A s1,2 (0)j γ s1,2 g 1,2 sinh( g 1,2 L 1,2 ) A p1,2 (0) A i1,2 * (0)
A i1,2 * ( L 1,2 ) e j Δ k 1,2 L 1,2 2 =j γ i1,2 g 1,2 sinh(g L 1,2 1,2 ) A p1,2 * (0) A s1,2 (0)+( cosh(g L 1,2 1,2 ) jΔ k 1,2 2 g 1,2 sinh(g L 1,2 1,2 ) ) A i1,2 * (0)
g 1,2 = γ s1,2 γ i1,2 | A p1,2 (0) | 2 Δ k 1,2 2 4 = Γ 1,2 2 Δ k 1,2 2 4 , γ s1,2,i1,2 = ω s1,2,i1,2 d eff1,2 n s1,2,i1,2 c and Γ 1,2 2 = γ s1,2 γ i1,2 | A p1,2 (0) | 2
A s2 ( L 2 )= A s2 ( L 1 + L 2 )exp( j 2 ( Δ k 2 L 2 +Δ k 1 L 1 ) ) =( c 2 + jΔ k 2 2 g 2 s 2 )( c 1 + jΔ k 1 2 g 1 s 1 ) A s1 (0) j γ s2 g 2 s 2 ×j γ i1 g 1 s 1 A p2 (0) A p1 * (0) A s1 (0)
A i2 * ( L 2 )= A i2 * ( L 1 + L 2 )exp( j 2 ( Δ k 2 L 2 +Δ k 1 L 1 ) ) =j γ i2 g 2 s 2 ( c 1 + jΔ k 1 2 g 1 s 1 ) A p2 * (0) A s1 (0)+j γ i1 g 1 s 1 ( c 2 jΔ k 2 2 g 2 s 2 ) A p1 * (0) A s1 (0)
A s2 ( L 2 )= A s2 ( L 1 + L 2 )=exp( j 2 ( Δ k 2 L 2 +Δ k 1 L 1 ) )( c 2 + jΔ k 2 2 g 2 s 2 )( c 1 + jΔ k 1 2 g 1 s 1 ) A s1 (0)
A i2 * ( L 2 )= A i2 * ( L 1 + L 2 )=exp( j 2 ( Δ k 2 L 2 +Δ k 1 L 1 ) )j γ i2 g 2 s 2 ( c 1 + jΔ k 1 2 g 1 s 1 ) A p2 * (0) A s1 (0)
G | A s (L) | 2 | A s (0) | 2 1
G S =[ (ΓL) 2 sin h 2 (gL) (gL) 2 ]
G D | A s2 ( L 1 + L 2 ) | 2 | A s1 (0) | 2 1= ( c 2 c 1 + s 2 s 1 ) 2 1 =4[ ( ΓL ) 2 sin h 2 ( g(2L) ) ( g(2L) ) 2 ]
G T | A s2 ( L 1 + L 2 ) | 2 | A s1 (0) | 2 1= ( c 2 c 1 ) 2 1=( cos h 2 (gL)+1 ) ( ΓL ) 2 sin h 2 ( gL ) ( gL ) 2 =2[ ( ΓL ) 2 sin h 2 ( gL ) ( gL ) 2 ]

Metrics