Abstract

In this paper we demonstrate the light transmission in a spectral range of 2.5 to 7.9 µm through a silica negative curvature hollow core fiber (NCHCF) with a cladding consisting of eight capillaries. A separation between the cladding capillaries was introduced to remove the additional resonances in the transmission bands. The measured optical loss at 3.39 µm was about 50 dB/km under a few modes waveguide regime.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. European Opt. Soc. 4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
    [CrossRef]
  3. A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard, “Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre,” Opt. Express 20(6), 6677–6684 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6677 .
    [CrossRef] [PubMed]
  4. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18470 .
    [CrossRef] [PubMed]
  5. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [CrossRef]
  6. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5142 .
    [CrossRef] [PubMed]
  7. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core–shaped Kagome Hollow-Core PCF,” CLEO 2010, paper CPDB4.
  8. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1441 .
    [CrossRef] [PubMed]
  9. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25723 .
    [CrossRef] [PubMed]
  10. F. Y. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11153 .
    [CrossRef] [PubMed]
  11. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013), http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-4-2-193 .
    [CrossRef] [PubMed]
  12. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3388 .
    [CrossRef] [PubMed]
  13. A. D. Pryamikov and A. S. Biriukov, “Excitation of cyclic Sommerfeld waves and Wood anomalies under plane wave scattering from dielectric cylinder at oblique incidence,” Phys.- Usp. (to be published).
  14. E. B. Kryukova, V. G. Plotnichenko, and E. M. Dianov, “IR absorption spectra in high-purity silica glasses fabricated by different technologies,” Proc. SPIE 4083, 71–80 (2000).
    [CrossRef]
  15. Optical constants of FUSED SILICA, http://refractiveindex.info/?group=GLASSES&material=F_SILICA
  16. T. P. White, R. C. McPhedran, C. M de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27(22), 1977–1979 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-22-1977 .
    [CrossRef] [PubMed]
  17. T. Hidaka, T. Morikawa, and J. Shimada, “Hollow‐core oxide‐glass cladding optical fibers for middle‐infrared region,” J. Appl. Phys. 52(7), 4467–4471 (1981), http://jap.aip.org/resource/1/japiau/v52/i7/p4467_s1 .
    [CrossRef]

2013 (2)

2012 (2)

2011 (4)

2010 (1)

2009 (1)

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. European Opt. Soc. 4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

E. B. Kryukova, V. G. Plotnichenko, and E. M. Dianov, “IR absorption spectra in high-purity silica glasses fabricated by different technologies,” Proc. SPIE 4083, 71–80 (2000).
[CrossRef]

1981 (1)

T. Hidaka, T. Morikawa, and J. Shimada, “Hollow‐core oxide‐glass cladding optical fibers for middle‐infrared region,” J. Appl. Phys. 52(7), 4467–4471 (1981), http://jap.aip.org/resource/1/japiau/v52/i7/p4467_s1 .
[CrossRef]

Anthony, J.

Argyros, A.

Astapovich, M. S.

Beaudou, B.

Benabid, F.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[CrossRef]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. European Opt. Soc. 4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

Biriukov, A. S.

Churbanov, M. F.

Couny, F.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. European Opt. Soc. 4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

de Sterke, C. M

Dianov, E. M.

Eggleton, B. J.

Février, S.

Hand, D. P.

Hidaka, T.

T. Hidaka, T. Morikawa, and J. Shimada, “Hollow‐core oxide‐glass cladding optical fibers for middle‐infrared region,” J. Appl. Phys. 52(7), 4467–4471 (1981), http://jap.aip.org/resource/1/japiau/v52/i7/p4467_s1 .
[CrossRef]

Knight, J. C.

Kosolapov, A. F.

Kryukova, E. B.

E. B. Kryukova, V. G. Plotnichenko, and E. M. Dianov, “IR absorption spectra in high-purity silica glasses fabricated by different technologies,” Proc. SPIE 4083, 71–80 (2000).
[CrossRef]

Leonhardt, R.

Leon-Saval, S. G.

Light, P. S.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. European Opt. Soc. 4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

Litchinitser, N. M.

Maier, R. R. J.

Mangan, B. J.

McPhedran, R. C.

Morikawa, T.

T. Hidaka, T. Morikawa, and J. Shimada, “Hollow‐core oxide‐glass cladding optical fibers for middle‐infrared region,” J. Appl. Phys. 52(7), 4467–4471 (1981), http://jap.aip.org/resource/1/japiau/v52/i7/p4467_s1 .
[CrossRef]

Plotnichenko, V. G.

Pryamikov, A. D.

Renshaw, S.

Roberts, P. J.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[CrossRef]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. European Opt. Soc. 4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Semjonov, S. L.

Setti, V.

Shephard, J. D.

Shimada, J.

T. Hidaka, T. Morikawa, and J. Shimada, “Hollow‐core oxide‐glass cladding optical fibers for middle‐infrared region,” J. Appl. Phys. 52(7), 4467–4471 (1981), http://jap.aip.org/resource/1/japiau/v52/i7/p4467_s1 .
[CrossRef]

Shiryaev, V. S.

Snopatin, G. E.

Urich, A.

Viale, P.

Vincetti, L.

Wadsworth, W. J.

White, T. P.

Yu, F.

Yu, F. Y.

Biomed. Opt. Express (1)

J. Appl. Phys. (1)

T. Hidaka, T. Morikawa, and J. Shimada, “Hollow‐core oxide‐glass cladding optical fibers for middle‐infrared region,” J. Appl. Phys. 52(7), 4467–4471 (1981), http://jap.aip.org/resource/1/japiau/v52/i7/p4467_s1 .
[CrossRef]

J. European Opt. Soc. (1)

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. European Opt. Soc. 4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[CrossRef]

Opt. Express (7)

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5142 .
[CrossRef] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1441 .
[CrossRef] [PubMed]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18470 .
[CrossRef] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25723 .
[CrossRef] [PubMed]

A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard, “Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre,” Opt. Express 20(6), 6677–6684 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6677 .
[CrossRef] [PubMed]

F. Y. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11153 .
[CrossRef] [PubMed]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3388 .
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys.- Usp. (1)

A. D. Pryamikov and A. S. Biriukov, “Excitation of cyclic Sommerfeld waves and Wood anomalies under plane wave scattering from dielectric cylinder at oblique incidence,” Phys.- Usp. (to be published).

Proc. SPIE (1)

E. B. Kryukova, V. G. Plotnichenko, and E. M. Dianov, “IR absorption spectra in high-purity silica glasses fabricated by different technologies,” Proc. SPIE 4083, 71–80 (2000).
[CrossRef]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (2)

Optical constants of FUSED SILICA, http://refractiveindex.info/?group=GLASSES&material=F_SILICA

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core–shaped Kagome Hollow-Core PCF,” CLEO 2010, paper CPDB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The analyzed fiber geometries; a) NCHCF with non touching capillaries; b) NCHCF with touching capillaries in the cladding.

Fig. 2
Fig. 2

(a) the calculated fundamental mode loss for a silica NCHCF with capillaries touching and not touching in the cladding; (b) the output end of the NCHCF with touching capillaries excited by visible light.

Fig. 3
Fig. 3

Cross section of a NCHCF with non touching capillaries.

Fig. 4
Fig. 4

a) The measured loss (red); the loss measured with He-Ne at 3.39 µm (red asterisk); the material loss in silica glass (black); the calculated loss (by left scale) and Re(neff) (by right scale) of the fundamental mode(orange); the calculated loss (by left scale) and Re(neff) (by right scale) of next higher order modes (green, navy, blue); b) the intensity distribution of the first several air core modes (the color of the frame corresponds to the color of the line in the plot).

Fig. 5
Fig. 5

The He-Ne laser radiation intensity versus fiber length. The straight line is an approximation of the exponential curve. The insets show the intensity distribution in the near field at the fiber length of 1 and 11 m.

Metrics