Abstract

We demonstrate the first proof of principle differential phase shift (DPS) quantum key distribution (QKD) using narrow-band heralded single photons with amplitude-phase modulations. In the 3-pulse case, we obtain a quantum bit error rate (QBER) as low as 3.06% which meets the unconditional security requirement. As we increase the pulse number up to 15, the key creation efficiency approaches 93.4%, but with a cost of increasing the QBER. Our result suggests that narrow-band single photons maybe a promising source for the DPS-QKD protocol.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
    [CrossRef]
  2. C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175.
  3. A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett.67, 661–663 (1991).
    [CrossRef] [PubMed]
  4. C. H. Bennett, “Quantum Cryptography Using any Two Nonorthogonal States,” Phys. Rev. Lett.68, 3121–3124 (1992).
    [CrossRef] [PubMed]
  5. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum Cryptography without Bell’s Theorem,” Phys. Rev. Lett.68, 557–559 (2000).
    [CrossRef]
  6. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
    [CrossRef] [PubMed]
  7. H. -K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett.108, 130503 (2012).
    [CrossRef] [PubMed]
  8. K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.89, 037902 (2002).
    [CrossRef] [PubMed]
  9. K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.103, 170503 (2009).
    [CrossRef] [PubMed]
  10. E. Waks, H. Takesue, and Y. Yamamoto, “Security of Differential-Phase-Shift Quantum Key Distribution against Individual Attacks,” Phys. Rev. A73, 012344 (2006).
    [CrossRef]
  11. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-Phase-Shift Quantum Key Distribution Using Coherent Light,” Phys. Rev. A68, 022317 (2003).
    [CrossRef]
  12. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
    [CrossRef]
  13. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
    [CrossRef] [PubMed]
  14. R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
    [CrossRef]
  15. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
    [CrossRef] [PubMed]
  16. P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
    [CrossRef]
  17. A. Trifonov and A. Zavriyev, “Secure Communication with a Heralded Single-Photon Source,” J. Opt. B7, S772–S777 (2005).
    [CrossRef]
  18. A. Soujaeff, T. Nishioka, T. Hasegawa, S. Takeuchi, T. Tsurumaru, K. Sasaki, and M. Matsui, “Quantum Key Distribution at 1550 nm Using a Pulse Heralded Single Photon Source,” Opt. Express15, 726–734 (2007).
    [CrossRef] [PubMed]
  19. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental Quantum Cryptography,” J. Cryptology5, 3–28 (1992).
    [CrossRef]
  20. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
    [CrossRef] [PubMed]
  21. S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett.100, 183603 (2008).
    [CrossRef] [PubMed]
  22. H. Yan, S. Zhu, and S. Du, “Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons,” Chin. Phys. Lett.28, 070307 (2011).
    [CrossRef]
  23. S. Du, J. Wen, and M. H. Rubin, “Narrowband Biphoton Generation Near Atomic Resonance,” J. Opt. Soc. Am. B25, C98–C108 (2008).
    [CrossRef]
  24. S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
    [CrossRef] [PubMed]
  25. P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett.101, 103601 (2008).
    [CrossRef] [PubMed]
  26. P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett.1, 173–179 (1986).
    [CrossRef]
  27. D. Gottesman and H. -K. Lo, “Proof of Security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theor.49, 457–475 (2003).
    [CrossRef]

2012 (2)

H. -K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett.108, 130503 (2012).
[CrossRef] [PubMed]

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

2011 (1)

H. Yan, S. Zhu, and S. Du, “Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons,” Chin. Phys. Lett.28, 070307 (2011).
[CrossRef]

2009 (1)

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.103, 170503 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Du, J. Wen, and M. H. Rubin, “Narrowband Biphoton Generation Near Atomic Resonance,” J. Opt. Soc. Am. B25, C98–C108 (2008).
[CrossRef]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett.101, 103601 (2008).
[CrossRef] [PubMed]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett.100, 183603 (2008).
[CrossRef] [PubMed]

2007 (4)

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

A. Soujaeff, T. Nishioka, T. Hasegawa, S. Takeuchi, T. Tsurumaru, K. Sasaki, and M. Matsui, “Quantum Key Distribution at 1550 nm Using a Pulse Heralded Single Photon Source,” Opt. Express15, 726–734 (2007).
[CrossRef] [PubMed]

2006 (1)

E. Waks, H. Takesue, and Y. Yamamoto, “Security of Differential-Phase-Shift Quantum Key Distribution against Individual Attacks,” Phys. Rev. A73, 012344 (2006).
[CrossRef]

2005 (1)

A. Trifonov and A. Zavriyev, “Secure Communication with a Heralded Single-Photon Source,” J. Opt. B7, S772–S777 (2005).
[CrossRef]

2004 (1)

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

2003 (3)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-Phase-Shift Quantum Key Distribution Using Coherent Light,” Phys. Rev. A68, 022317 (2003).
[CrossRef]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

D. Gottesman and H. -K. Lo, “Proof of Security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theor.49, 457–475 (2003).
[CrossRef]

2002 (4)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.89, 037902 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

2000 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum Cryptography without Bell’s Theorem,” Phys. Rev. Lett.68, 557–559 (2000).
[CrossRef]

1992 (2)

C. H. Bennett, “Quantum Cryptography Using any Two Nonorthogonal States,” Phys. Rev. Lett.68, 3121–3124 (1992).
[CrossRef] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental Quantum Cryptography,” J. Cryptology5, 3–28 (1992).
[CrossRef]

1991 (1)

A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

1986 (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

Acín, A.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
[CrossRef] [PubMed]

Alléaume, R.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

Aspect, A.

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

Atkinson, P.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Belthangady, C.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett.101, 103601 (2008).
[CrossRef] [PubMed]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett.100, 183603 (2008).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum Cryptography without Bell’s Theorem,” Phys. Rev. Lett.68, 557–559 (2000).
[CrossRef]

C. H. Bennett, “Quantum Cryptography Using any Two Nonorthogonal States,” Phys. Rev. Lett.68, 3121–3124 (1992).
[CrossRef] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental Quantum Cryptography,” J. Cryptology5, 3–28 (1992).
[CrossRef]

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175.

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental Quantum Cryptography,” J. Cryptology5, 3–28 (1992).
[CrossRef]

Beveratos, A.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum Cryptography without Bell’s Theorem,” Phys. Rev. Lett.68, 557–559 (2000).
[CrossRef]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental Quantum Cryptography,” J. Cryptology5, 3–28 (1992).
[CrossRef]

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175.

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Brouri-Tualle, R.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

Brunner, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
[CrossRef] [PubMed]

Chen, J. F.

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

Curty, M.

H. -K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett.108, 130503 (2012).
[CrossRef] [PubMed]

Du, S.

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

H. Yan, S. Zhu, and S. Du, “Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons,” Chin. Phys. Lett.28, 070307 (2011).
[CrossRef]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett.101, 103601 (2008).
[CrossRef] [PubMed]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett.100, 183603 (2008).
[CrossRef] [PubMed]

S. Du, J. Wen, and M. H. Rubin, “Narrowband Biphoton Generation Near Atomic Resonance,” J. Opt. Soc. Am. B25, C98–C108 (2008).
[CrossRef]

Duan, L. -M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

Dumeige, Y.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

Fattal, D.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Gisin, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Gottesman, D.

D. Gottesman and H. -K. Lo, “Proof of Security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theor.49, 457–475 (2003).
[CrossRef]

Grangier, P

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Harris, S. E.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett.101, 103601 (2008).
[CrossRef] [PubMed]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett.100, 183603 (2008).
[CrossRef] [PubMed]

Hasegawa, T.

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Inoue, K.

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-Phase-Shift Quantum Key Distribution Using Coherent Light,” Phys. Rev. A68, 022317 (2003).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.89, 037902 (2002).
[CrossRef] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

Intallura, P. M.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Karimov, O. Z.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Kimble, H. J.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

Kolchin, P.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett.100, 183603 (2008).
[CrossRef] [PubMed]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett.101, 103601 (2008).
[CrossRef] [PubMed]

Kuzmich, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

Liu, C.

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

Lo, H. -K.

H. -K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett.108, 130503 (2012).
[CrossRef] [PubMed]

D. Gottesman and H. -K. Lo, “Proof of Security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theor.49, 457–475 (2003).
[CrossRef]

Loy, M. M. T.

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

Massar, S.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
[CrossRef] [PubMed]

Matsui, M.

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum Cryptography without Bell’s Theorem,” Phys. Rev. Lett.68, 557–559 (2000).
[CrossRef]

Messin, G.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Nishioka, T.

Pironio, S.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
[CrossRef] [PubMed]

Poizat, J. -P.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Qi, B.

H. -K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett.108, 130503 (2012).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Ritchie, D. A.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Roch, J.-F.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

Roger, G.

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

Rubin, M. H.

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental Quantum Cryptography,” J. Cryptology5, 3–28 (1992).
[CrossRef]

Santori, C.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

Sasaki, K.

Scarani, V.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
[CrossRef] [PubMed]

See, P.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Shields, A. J.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental Quantum Cryptography,” J. Cryptology5, 3–28 (1992).
[CrossRef]

Solomon, G. S.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

Soujaeff, A.

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of Differential-Phase-Shift Quantum Key Distribution against Individual Attacks,” Phys. Rev. A73, 012344 (2006).
[CrossRef]

Takeuchi, S.

Tamaki, K.

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.103, 170503 (2009).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Treussart, F.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

Trifonov, A.

A. Trifonov and A. Zavriyev, “Secure Communication with a Heralded Single-Photon Source,” J. Opt. B7, S772–S777 (2005).
[CrossRef]

Tsurumaru, T.

Villing, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Vuckovic, J.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

Waks, E.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of Differential-Phase-Shift Quantum Key Distribution against Individual Attacks,” Phys. Rev. A73, 012344 (2006).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-Phase-Shift Quantum Key Distribution Using Coherent Light,” Phys. Rev. A68, 022317 (2003).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.89, 037902 (2002).
[CrossRef] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

Ward, M. B.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Wen, J.

Wen, K.

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.103, 170503 (2009).
[CrossRef] [PubMed]

Wong, G. K. L.

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

Yamamoto, Y.

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.103, 170503 (2009).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of Differential-Phase-Shift Quantum Key Distribution against Individual Attacks,” Phys. Rev. A73, 012344 (2006).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-Phase-Shift Quantum Key Distribution Using Coherent Light,” Phys. Rev. A68, 022317 (2003).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.89, 037902 (2002).
[CrossRef] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

Yan, H.

H. Yan, S. Zhu, and S. Du, “Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons,” Chin. Phys. Lett.28, 070307 (2011).
[CrossRef]

Yin, G. Y.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett.100, 183603 (2008).
[CrossRef] [PubMed]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett.101, 103601 (2008).
[CrossRef] [PubMed]

Yuan, Z. L.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Zavriyev, A.

A. Trifonov and A. Zavriyev, “Secure Communication with a Heralded Single-Photon Source,” J. Opt. B7, S772–S777 (2005).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Zhang, S.

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

Zhou, S.

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

Zhu, S.

H. Yan, S. Zhu, and S. Du, “Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons,” Chin. Phys. Lett.28, 070307 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum Key Distribution Using a Triggered Quantum Dot Source Emitting near 1.3 μm,” Appl. Phys. Lett.91, 161103 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

H. Yan, S. Zhu, and S. Du, “Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons,” Chin. Phys. Lett.28, 070307 (2011).
[CrossRef]

Europhys. Lett. (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

IEEE Trans. Inf. Theor. (1)

D. Gottesman and H. -K. Lo, “Proof of Security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theor.49, 457–475 (2003).
[CrossRef]

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental Quantum Cryptography,” J. Cryptology5, 3–28 (1992).
[CrossRef]

J. Opt. B (1)

A. Trifonov and A. Zavriyev, “Secure Communication with a Heralded Single-Photon Source,” J. Opt. B7, S772–S777 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum Key Distribution over a 40-dB Channel Loss Using Superconducting Single-Photon Detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Nature (2)

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure Communication: Quantum Cryptography with a Photon Turnstile,” Nature420, 762 (2002).
[CrossRef] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. -M. Duan, and H. J. Kimble, “Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles,” Nature423, 731–734 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J. -P. Poizat, and P Grangier, “Experimental Open-Air Quantum Key Distribution with a Single-Photon Source,” New J. Phys.6, 92 (2004).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

E. Waks, H. Takesue, and Y. Yamamoto, “Security of Differential-Phase-Shift Quantum Key Distribution against Individual Attacks,” Phys. Rev. A73, 012344 (2006).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-Phase-Shift Quantum Key Distribution Using Coherent Light,” Phys. Rev. A68, 022317 (2003).
[CrossRef]

Phys. Rev. Lett. (10)

A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum Cryptography Using any Two Nonorthogonal States,” Phys. Rev. Lett.68, 3121–3124 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum Cryptography without Bell’s Theorem,” Phys. Rev. Lett.68, 557–559 (2000).
[CrossRef]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-Independent Security of Quantum Cryptography against Collective Attacks,” Phys. Rev. Lett.98, 230501 (2007).
[CrossRef] [PubMed]

H. -K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent Quantum Key Distribution,” Phys. Rev. Lett.108, 130503 (2012).
[CrossRef] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.89, 037902 (2002).
[CrossRef] [PubMed]

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett.103, 170503 (2009).
[CrossRef] [PubMed]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett.100, 183603 (2008).
[CrossRef] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. -P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-Optic Modulation of Single Photons,” Phys. Rev. Lett.101, 103601 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A Dark-Line Two-Dimensional Magneto-Optical Trap of 85Rb Atoms with High Optical Depth,” Rev. Sci. Instrum.83, 073102 (2012).
[CrossRef] [PubMed]

Other (1)

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

DPS-QKD scheme with single photons for N=3. T is the modulated time slot period and the time delay between two paths of interferometer; D1,D2 are two single-photon detectors.

Fig. 2
Fig. 2

(a) Experimental setup for narrow-band heralded single-photon generation and DPS quantum key distribution. The relevant 85Rb atomic energy levels are |1〉 = |5S1/2, F = 2〉, |2〉 = |5S1/2, F = 3〉, |3〉 = |5P1/2, F = 3〉, and |4〉 = |5P3/2, F = 3〉. (b) and (c) show Stokes-anti-Stokes two-photon coincidence counts measured for 300 s with a time bin of 2 ns. The plot (1) is the heralded single-photon waveform without modulation. The plots (2) are the heralded single photons with 3- and 15-pulse modulations. (d) The visibility of the M-Z interferometer at detector D1 with incident photons at different polarization angles.

Fig. 3
Fig. 3

Photon counts at the two output ports of M-Z interferometer at N=3 in the following modulation patterns: (a) (0, 0, 0), (b) (π, 0, 0), (c) (0, π, 0), and (d) (0, 0, π).

Fig. 4
Fig. 4

Photon counts at the two output ports of the M-Z interferometer at N=15 in the following modulation patterns: (a) (0, 0, 0, π, π, 0, π, π, 0, 0, 0, π, π, π, 0), (b) (0, 0, 0, π, π, 0, π, π, 0, π, π, 0, 0, π, 0), (c) (π, 0, 0, 0, 0, π, π, 0, 0, π, π, 0, 0, π, π), and (d) (π, π, 0, 0, π, 0, 0, 0, 0, π, π, 0, 0, 0, 0).

Fig. 5
Fig. 5

The DPS-QKD characterization at different N: (a) the second-order correlation g(2) of the heralded anti-Stokes photons, (b) the key creation efficiency, (c) the average QBER, and (d) the key generation rate. The black dashed line in (c) is the QBER baseline (about 1.5%) caused by the detector dark counts.

Metrics