Abstract

We present a CMOS-compatible athermal tunable silicon optical lattice filter composed of 10 cascaded 2 × 2 asymmetric Mach-Zehnder interferometers. Active tuning experiments show that the filter central wavelength can be red-/blue-shifted by 13.1/21.3 nm with power consumption of 77/96 mW on top/bottom arms. Temperature shift measurements show that the thermal-sensitivity of the filter central wavelength before active tuning is as low as −1.465 pm/°C. The thermal-sensitivity is varied within 26.5 pm/°C to −27.1 pm/°C when the filter central wavelength is tuned in the wavelength range of 1534 nm to 1551 nm. We use the transfer matrix method to theoretically model the lattice filter and its thermal-sensitivity before and after tuning is analyzed and discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004).
    [CrossRef] [PubMed]
  2. S. Fathpour, Silicon Photonics for Telecommunications and Biomedicine (CRC Press, 2011).
  3. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  4. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9(3), 561–601 (1980).
    [CrossRef]
  5. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE6273, 62732J, 62732J-10 (2006).
    [CrossRef]
  6. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18(4), 3487–3493 (2010).
    [CrossRef] [PubMed]
  7. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett.34(5), 599–601 (2009).
    [CrossRef] [PubMed]
  8. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with firectly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
  9. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express19(6), 5143–5148 (2011).
    [CrossRef] [PubMed]
  10. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012).
    [CrossRef] [PubMed]
  11. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  12. P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett.35(20), 3462–3464 (2010).
    [CrossRef] [PubMed]
  13. L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, G. Morthier, J. Teng, X. Han, X. Jian, M. Zhao, and R. Baets, “Athermal AWGs in SOI by overlaying a polymer cladding on narrowed arrayed waveguides,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThV6.
  14. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
    [CrossRef]
  15. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express18(3), 1879–1887 (2010).
    [CrossRef] [PubMed]
  16. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37(12), 2253–2255 (2012).
    [CrossRef] [PubMed]
  17. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett.28(18), 1663–1664 (2003).
    [CrossRef] [PubMed]
  18. W. Qian and H. Sailing, “Optimal design of planar wavelength circuits based on Mach-Zehnder interferometers and their cascaded forms,” J. Lightwave Technol.23(3), 1284–1290 (2005).
    [CrossRef]
  19. S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
    [CrossRef]
  20. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
    [CrossRef] [PubMed]
  21. C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, and G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express19(16), 15429–15437 (2011).
    [CrossRef] [PubMed]
  22. M. J. Strain, M. Gnan, G. Bellanca, R. M. De La Rue, and M. Sorel, “Retrieval of bragg grating transmission spectra by post-process removal of spurious Fabry-Pérot oscillations,” Opt. Express17(16), 13493–13501 (2009).
    [CrossRef] [PubMed]
  23. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (John Wiley & Sons, Inc., 1999).

2012

2011

2010

2009

2006

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE6273, 62732J, 62732J-10 (2006).
[CrossRef]

2005

2004

G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004).
[CrossRef] [PubMed]

2003

1980

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9(3), 561–601 (1980).
[CrossRef]

Adibi, A.

Alipour, P.

Baets, R.

Bellanca, G.

Bergman, K.

Bogaerts, W.

Chan, J.

Chen, L.

Chen, S.

Cheung, S.

Danziger, S.

De La Rue, R. M.

Ding, Z.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

Djordjevic, S. S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

Dumon, P.

Eftekhar, A. A.

Fontaine, N. K.

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE6273, 62732J, 62732J-10 (2006).
[CrossRef]

Gnan, M.

Gondarenko, A.

Guan, B.

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Guha, B.

Han, X.

Hill, C. M.

Hosseini, E. S.

Ibrahim, S.

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Itabashi, S.-i.

Jian, X.

Kyotoku, B. B. C.

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE6273, 62732J, 62732J-10 (2006).
[CrossRef]

Li, C.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9(3), 561–601 (1980).
[CrossRef]

Li, Z.

Lipson, M.

Lo, G. Q.

Luo, L. W.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE6273, 62732J, 62732J-10 (2006).
[CrossRef]

Momeni, B.

Moooka, T.

Morthier, G.

Okamoto, K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

Padmaraju, K.

Poitras, C. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Pomerene, A. T.

Preston, K.

Qian, W.

Qiu, C.

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Sailing, H.

Scott, R. P.

Seaford, L. L.

Shoji, T.

Shu, J.

Song, J. H.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Sorel, M.

Strain, M. J.

Su, T.

Takahashi, J.-i.

Teng, J.

Tsuchizawa, T.

Uenuma, M.

Watanabe, T.

Xu, Q.

Yamada, K.

Yoo, S. J. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

Yu, M.

Zhang, H.

Zhang, J.

Zhang, X.

Zhao, M.

Zhou, L.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

J. Lightwave Technol.

J. Phys. Chem. Ref. Data

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9(3), 561–601 (1980).
[CrossRef]

Nature

G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Opt. Express

M. J. Strain, M. Gnan, G. Bellanca, R. M. De La Rue, and M. Sorel, “Retrieval of bragg grating transmission spectra by post-process removal of spurious Fabry-Pérot oscillations,” Opt. Express17(16), 13493–13501 (2009).
[CrossRef] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009).
[CrossRef] [PubMed]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express18(3), 1879–1887 (2010).
[CrossRef] [PubMed]

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18(4), 3487–3493 (2010).
[CrossRef] [PubMed]

C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express19(6), 5143–5148 (2011).
[CrossRef] [PubMed]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, and G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express19(16), 15429–15437 (2011).
[CrossRef] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE6273, 62732J, 62732J-10 (2006).
[CrossRef]

Other

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with firectly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, G. Morthier, J. Teng, X. Han, X. Jian, M. Zhao, and R. Baets, “Athermal AWGs in SOI by overlaying a polymer cladding on narrowed arrayed waveguides,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThV6.

S. Fathpour, Silicon Photonics for Telecommunications and Biomedicine (CRC Press, 2011).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (John Wiley & Sons, Inc., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Microscope image of the tunable silicon optical lattice filter. (b) Zoom-in view of one MZI stage. (c) Cross-sectional schematic of the p-i-p junction-based micro-heater.

Fig. 2
Fig. 2

Transmission spectrum and filter central wavelength change with the tuning power. (a)-(c) Power is applied to the top arms. (d)-(f) Power is applied to the bottom arms.

Fig. 3
Fig. 3

(a) and (b) Thermal shift of the lattice filter transmission spectra in response to increased temperature. (c) and (d) Zoom-in view of the filtering band.

Fig. 4
Fig. 4

(a) Thermal shift of the filter central wavelength with temperature. The different lines indicate the shifted central wavelengths under appropriate tuning powers. Solid lines: bar-port; dashed lines: cross-port. (b) Variation of the thermal-sensitivity when the filter central wavelength is actively tuned.

Fig. 5
Fig. 5

Simulated temperature sensitivities of (a) the effective index of the silicon ridge waveguide and (b) the phase difference of the asymmetric MZI as a function of top arm waveguide width.

Fig. 6
Fig. 6

(a) Measured (solid line) and fitted (dashed line) transmission spectra without active tuning. (b) Extracted phase difference between MZI arms as a function of wavelength. (C) Measured (solid symbols) and fitted (red line) thermal-sensitivity of the lattice filter. (d) Extracted temperature sensitivity of phase difference as a function of wavelength.

Fig. 7
Fig. 7

Calculated thermal-sensitivity of the lattice filter changing with its central wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FSR= λ 0 2 n g1 L 1 n g2 L 2 ,
Δϕ T = 2π λ ( n eff1 T L 1 n eff2 T L 2 ),
( E bar E cross )= ( M c M arm ) 10 M c ( E in 0 ) = ( [ t iκ iκ t ][ exp(i ϕ 1 ) 0 0 exp(i ϕ 2 ) ] ) 10 [ t iκ iκ t ]( E in 0 ),
λ 0 T = Δϕ( λ 0 ) T / 2π λ 0 M( λ 0 ) = Δϕ( λ 0 ) T / 2π λ 0 m Δϕ( λ 0 ) λ / 2π λ 0 ,

Metrics