Abstract

An electrically tunable-focusing and polarizer-free liquid crystal (LC) lens for ophthalmic applications is demonstrated. The optical mechanism of a LC lens used in human eye system is introduced. The polarizer-free LC lens for myopia-presbyopia based on artificial accommodation is demonstrated. The continuously tunable-focusing properties of the LC lenses are more practical in applications for different visional conditions of people. The concept we proposed can also be applied to another types of lenses as long as the focusing properties are tunable. The concept in this paper can also be extensively applied to imaging systems, and projection systems, such as cameras in cell phones, pico projectors, and endoscopes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Werner, F. Trindade, F. Pereira, and L. Werner, “Physiology of accommodation and presbyopia,” Arq. Bras. Oftalmol.63, 503–509 (2000).
  2. E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis.7(10), 16, 1–10 (2007).
    [PubMed]
  3. G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A19(2), 266–275 (2002).
    [PubMed]
  4. M. Jalie, Opthalmic lenses & Dispensing, 3rd. ed. (Elsevier/Butterworth Heinemann, 2008).
  5. D. A. Atchison and G. Smith, Optics of The Human Eyes (Elsevier Science Limited, 2002).
  6. H. Ren and S. T. Wu, Introduction to adaptive lenses (John Wiley & Sons, 2012).
  7. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express14(20), 8900–8917 (2006).
    [PubMed]
  8. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).
  9. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett.97(6), 063505 (2010).
  10. H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys.49(10), 102502 (2010).
  11. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
  12. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
  13. H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater.12(6), 234–240 (2011).
  14. M. Ye and S. Sato, “Liquid Crystal Lens with Insulator Layers for Focusing Light Waves of Arbitrary Polarizations,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6439–6440 (2003).
  15. M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett.3, 505–507 (2006).
  16. G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
    [PubMed]
  17. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express13(22), 8746–8752 (2005).
    [PubMed]
  18. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
  19. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010).
    [PubMed]
  20. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012).
    [PubMed]
  21. A. F. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express4(9), 344–352 (1999).
    [PubMed]
  22. A. N. Simonov, G. Vdovin, and M. C. Rombach, “Cubic optical elements for an accommodative intraocular lens,” Opt. Express14(17), 7757–7775 (2006).
    [PubMed]
  23. A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-crystal intraocular adaptive lens with wireless control,” Opt. Express15(12), 7468–7478 (2007).
    [PubMed]

2012

2011

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater.12(6), 234–240 (2011).

2010

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett.97(6), 063505 (2010).

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys.49(10), 102502 (2010).

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).

P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010).
[PubMed]

2008

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).

2007

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis.7(10), 16, 1–10 (2007).
[PubMed]

A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-crystal intraocular adaptive lens with wireless control,” Opt. Express15(12), 7468–7478 (2007).
[PubMed]

2006

A. N. Simonov, G. Vdovin, and M. C. Rombach, “Cubic optical elements for an accommodative intraocular lens,” Opt. Express14(17), 7757–7775 (2006).
[PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express14(20), 8900–8917 (2006).
[PubMed]

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett.3, 505–507 (2006).

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

2005

2002

2000

L. Werner, F. Trindade, F. Pereira, and L. Werner, “Physiology of accommodation and presbyopia,” Arq. Bras. Oftalmol.63, 503–509 (2000).

1999

1979

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).

Ayräs, P.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).

Chen, M. S.

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater.12(6), 234–240 (2011).

Dodge, M. R.

Drexler, W.

Dubbelman, M.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis.7(10), 16, 1–10 (2007).
[PubMed]

Fang, J.

Fernandez, E. J.

Ge, Z.

Giridhar, M. S.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Haddock, J. N.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Heethaar, R.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis.7(10), 16, 1–10 (2007).
[PubMed]

Hermann, B.

Hermans, E.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis.7(10), 16, 1–10 (2007).
[PubMed]

Hirsa, A. H.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).

Honkanen, S.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).

Kippelen, B.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Li, G. Q.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).

Lin, H. C.

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012).
[PubMed]

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater.12(6), 234–240 (2011).

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett.97(6), 063505 (2010).

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys.49(10), 102502 (2010).

Lin, Y. H.

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012).
[PubMed]

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater.12(6), 234–240 (2011).

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett.97(6), 063505 (2010).

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys.49(10), 102502 (2010).

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express13(22), 8746–8752 (2005).
[PubMed]

Loktev, M.

Loktev, M. Y.

López, C. A.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).

Love, G. D.

Mathine, D. L.

P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010).
[PubMed]

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Meredith, G. R.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Naumov, A. F.

Pereira, F.

L. Werner, F. Trindade, F. Pereira, and L. Werner, “Physiology of accommodation and presbyopia,” Arq. Bras. Oftalmol.63, 503–509 (2000).

Peyghambarian, N.

P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010).
[PubMed]

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Peyman, G.

Povazay, B.

Ren, H.

Rombach, M. C.

Sato, S.

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett.3, 505–507 (2006).

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).

Schwiegerling, J.

P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010).
[PubMed]

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Simonov, A. N.

Trindade, F.

L. Werner, F. Trindade, F. Pereira, and L. Werner, “Physiology of accommodation and presbyopia,” Arq. Bras. Oftalmol.63, 503–509 (2000).

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).

Unterhuber, A.

Vabre, L.

Valley, P.

P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010).
[PubMed]

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

van der Heijde, R.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis.7(10), 16, 1–10 (2007).
[PubMed]

Vdovin, G.

Vladimirov, F. L.

Wang, B.

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett.3, 505–507 (2006).

Werner, L.

L. Werner, F. Trindade, F. Pereira, and L. Werner, “Physiology of accommodation and presbyopia,” Arq. Bras. Oftalmol.63, 503–509 (2000).

L. Werner, F. Trindade, F. Pereira, and L. Werner, “Physiology of accommodation and presbyopia,” Arq. Bras. Oftalmol.63, 503–509 (2000).

Williams, D. R.

Williby, G.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Wu, S. T.

Wu, Y. H.

Ye, M.

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett.3, 505–507 (2006).

Yoon, G.-Y.

Zhao, Y.

Appl. Phys. Lett.

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett.97(6), 063505 (2010).

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).

Arq. Bras. Oftalmol.

L. Werner, F. Trindade, F. Pereira, and L. Werner, “Physiology of accommodation and presbyopia,” Arq. Bras. Oftalmol.63, 503–509 (2000).

IEEE Photon. Technol. Lett.

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett.3, 505–507 (2006).

J. Opt. Soc. Am. A

J. Vis.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis.7(10), 16, 1–10 (2007).
[PubMed]

Jpn. J. Appl. Phys.

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys.49(10), 102502 (2010).

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).

Nat. Photonics

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[PubMed]

Trans. Electr. Electron. Mater.

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater.12(6), 234–240 (2011).

Other

M. Ye and S. Sato, “Liquid Crystal Lens with Insulator Layers for Focusing Light Waves of Arbitrary Polarizations,” Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6439–6440 (2003).

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).

M. Jalie, Opthalmic lenses & Dispensing, 3rd. ed. (Elsevier/Butterworth Heinemann, 2008).

D. A. Atchison and G. Smith, Optics of The Human Eyes (Elsevier Science Limited, 2002).

H. Ren and S. T. Wu, Introduction to adaptive lenses (John Wiley & Sons, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Operating principles of an electrically tunable ophthalmic lens using a polarizer-free LC lens. (a)When the LC lens is off and the crystalline lens is relaxed (i.e., lens powers of both lenses are zero), the farthest point the eye can see is point A. (b) When the LC lens is still off, the eye can see near under the curvature change of the crystalline lens. The nearest point the eye can see is point B. (c) From (b), when the LC lens is turned on as a positive lens, the nearest point shifts to point C (i.e., d3>d4). (d) From (c), the eye can clearly see the object in a range between point A and point C. (i.e., d0>d5>d4) when we manipulate the lens powers of the positive LC lens and the crystalline lens. (e) When the LC lens is operated as a negative lens and the crystalline lens is relaxed, the farthest point eye can see is point E. (d6>d0).

Fig. 2
Fig. 2

The structure of the polarization independent LC lens at (a) V1 = V2 = 0, (b) V1>V2, (c) V1<V2. The focal length is infinity in (a), positive in (b), and negative in (c).

Fig. 3
Fig. 3

The lens power of the LC lens as a function of applied voltage. Blue dots represent the positive lens power with changing V2 at V1 = 160 Vrms. Red triangles represents the negative lens power with changing V1 at V2 = 160 Vrms. f = 1kHz.

Fig. 4
Fig. 4

(a)The objective distance as a function of accommodation of camera at different lens power of the LC lens. The camera was set to mimic a myopic-presbyopic eye with amplitude of accommodation of 2 D. (b) The same Fig. 4(a) with different range of the objective distance.

Fig. 5
Fig. 5

Image performances of the eyeglasses for myopia-presbyopia. Four pieces of objective papers with symbols are placed at 360 cm, 100 cm, 33 cm and 20 cm. (a) When the lens power of the LC lens is −1D, the objective at 360 cm is clear. (b) When the lens power of the LC lens is 0D, the objective at 100 cm is clear. (c) When the lens power of the LC lens is 2D, the objective at 33 cm is clear. The accommodation of camera = 0D in (a), (b), and (c). (d) The objective at 20 cm is also clear under both of the accommodation of camera = 2D and the lens power of the LC lens = 2D.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

1 d o + 1 d' = P LC (V),
1 d g d' + n d'' = P C ,
n d 1 d'' + n d 2 = P cryst
d o = 1 P LC (V)+S( P cryst ) ,
S( P cryst )= 1 d g 1 S'( P cryst ) ,
S'( P cryst )= P c 1 d 1 n 1 P cryst n d 2
P LC (V)= 2δn(V)d r 2
Γ= 2π λ (Δnd),
f= π r 2 Γλ .

Metrics