Abstract

We propose a vortex-like metamaterial device that is capable of transferring image along a spiral route without losing subwavelength information of the image. The super-resolution image can be guided and magnified at the same time with one single design. Our design may provide insights in manipulating super-resolution image in a more flexible manner. Examples are given and illustrated with numerical simulations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
    [CrossRef] [PubMed]
  2. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009).
    [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
    [CrossRef] [PubMed]
  5. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006).
    [CrossRef] [PubMed]
  6. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
    [CrossRef] [PubMed]
  7. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
    [CrossRef] [PubMed]
  8. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
    [CrossRef]
  9. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
    [CrossRef]
  10. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006).
    [CrossRef] [PubMed]
  11. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
    [CrossRef] [PubMed]
  12. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
    [CrossRef]
  13. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett.32, 3432–3434 (2007).
    [CrossRef] [PubMed]
  14. J. Wang, H. Y. Dong, K. H. Fung, T. J. Cui, and N. X. Fang, “Subwavelength image manipulation through an oblique layered system,” Opt. Express19, 16809–16820 (2011).
    [CrossRef] [PubMed]
  15. G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012).
    [CrossRef]
  16. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
    [CrossRef]
  17. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2, 438–442 (2008).
    [CrossRef]
  18. Y. Zhao, D. Gan, J. Cui, C. Wang, C. Du, and X. Luo, “Super resolution imaging by compensating oblique lens with metallodielectric films,” Opt. Express16, 5697–5707 (2008).
    [CrossRef] [PubMed]
  19. H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B78, 054204 (2008).
    [CrossRef]
  20. A. Wonisch, U. Neuhäusler, N. M. Kabachnik, T. Uphues, M. Uiberacker, V. Yakovlev, F. Krausz, M. Drescher, U. Kleineberg, and U. Heinzmann, “Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses,” Appl. Opt.45, 4147–4156 (2006).
    [CrossRef] [PubMed]
  21. J. Zhang, L. You, H. Ye, and D. Yu, “Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope,” Nanotechnology18, 155303 (2007).
    [CrossRef]

2012 (2)

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012).
[CrossRef]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
[CrossRef]

2011 (1)

2010 (1)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

2009 (1)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2, 438–442 (2008).
[CrossRef]

Y. Zhao, D. Gan, J. Cui, C. Wang, C. Du, and X. Luo, “Super resolution imaging by compensating oblique lens with metallodielectric films,” Opt. Express16, 5697–5707 (2008).
[CrossRef] [PubMed]

H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B78, 054204 (2008).
[CrossRef]

2007 (5)

A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett.32, 3432–3434 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

J. Zhang, L. You, H. Ye, and D. Yu, “Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope,” Nanotechnology18, 155303 (2007).
[CrossRef]

2006 (5)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006).
[CrossRef] [PubMed]

A. Wonisch, U. Neuhäusler, N. M. Kabachnik, T. Uphues, M. Uiberacker, V. Yakovlev, F. Krausz, M. Drescher, U. Kleineberg, and U. Heinzmann, “Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses,” Appl. Opt.45, 4147–4156 (2006).
[CrossRef] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

Alekseyev, L. V.

Alù, A.

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012).
[CrossRef]

Bartal, G.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

Belov, P. A.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

Castaldi, G.

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012).
[CrossRef]

Chan, C. T.

H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B78, 054204 (2008).
[CrossRef]

Chen, H.

H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B78, 054204 (2008).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009).
[CrossRef] [PubMed]

Choi, H.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

Cui, J.

Cui, T. J.

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

Dong, H. Y.

Drescher, M.

Du, C.

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Engheta, N.

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
[CrossRef]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Fang, N. X.

Fung, K. H.

Galdi, V.

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012).
[CrossRef]

Gan, D.

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

Heinzmann, U.

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006).
[CrossRef] [PubMed]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

Jacob, Z.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009).
[CrossRef] [PubMed]

Kabachnik, N. M.

Kawata, S.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2, 438–442 (2008).
[CrossRef]

Kildishev, A. V.

Kleineberg, U.

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006).
[CrossRef] [PubMed]

Krausz, F.

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009).
[CrossRef] [PubMed]

Liu, Z.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
[CrossRef]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
[CrossRef]

Luo, X.

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009).
[CrossRef] [PubMed]

Narimanov, E.

Narimanov, E. E.

Neuhäusler, U.

Ono, A.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2, 438–442 (2008).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Rho, J.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
[CrossRef]

Savoia, S.

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006).
[CrossRef] [PubMed]

Uiberacker, M.

Uphues, T.

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006).
[CrossRef] [PubMed]

Verma, P.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2, 438–442 (2008).
[CrossRef]

Wang, C.

Wang, J.

Wonisch, A.

Xiong, Y.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Yakovlev, V.

Ye, H.

J. Zhang, L. You, H. Ye, and D. Yu, “Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope,” Nanotechnology18, 155303 (2007).
[CrossRef]

Ye, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

Yin, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

You, L.

J. Zhang, L. You, H. Ye, and D. Yu, “Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope,” Nanotechnology18, 155303 (2007).
[CrossRef]

Yu, D.

J. Zhang, L. You, H. Ye, and D. Yu, “Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope,” Nanotechnology18, 155303 (2007).
[CrossRef]

Zhang, J.

J. Zhang, L. You, H. Ye, and D. Yu, “Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope,” Nanotechnology18, 155303 (2007).
[CrossRef]

Zhang, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Zhao, Y.

Appl. Opt. (1)

Nano Lett. (1)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

J. Zhang, L. You, H. Ye, and D. Yu, “Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope,” Nanotechnology18, 155303 (2007).
[CrossRef]

Nat. Commun. (2)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010).
[CrossRef]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
[CrossRef]

Nat. Photonics (1)

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2, 438–442 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B78, 054204 (2008).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

Science (6)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The geometry of the proposed vortex-like layered hyperlens in the rθ plane, the û and directions are two principal axes obtained by rotating an angle α from the θ̂ and . (b) Typical hyperbolic equifrequency contours (EFCs) pertaining to the dispersion relation in Eq. (3) for εu < 0 and εv > 0 in the cylindrical (kr, kθ) and rotated (ku, kv) spectral reference systems. (c) Sketch of the idea of image rotating setup. The point source is placed at the input plane of θ = θ1, and the distance rs away from the origin O of the hyperlens.

Fig. 2
Fig. 2

The distribution of magnetic energy density of a 2D transverse magnetic (TM) excitation for a 2D layered hyperlens [(a)–(c)] and the corresponding effective anisotropic medium [(d)–(f)], respectively. Three cases of different angles of rotation Δθ = 135°, 180° and 225° are considered. The point source is placed at the input plane of θ = θ1 = 0°, and the distance rs = 0.2λ away from the origin of the hyperlens. The oblique angle is taken as α = 18° and ra = 0.1λ, rc = 0.4λ.

Fig. 3
Fig. 3

FWHM (full markers, left axis) and peak intensity (empty markers, right axis) at the output plane, for two cases of the oblique angle α = 18° (solid lines), and α = 27° (dotted lines), as a function of (a) angle of rotation Δθ, and (b) effective permittivity Re(εv).

Fig. 4
Fig. 4

Image transfer distance as a function of angle of rotation Δθ when α are taken as 18° (solid lines), and 27° (dotted lines), respectively.

Fig. 5
Fig. 5

The distribution of magnetic energy density for the layered hyperlens with the oblique angle α = 18°, 27° and 36°. Two point sources at the input plane θ = θ1 = 0° are separated by Δr = 0.1λ, where the ratio of the source amplitudes is 1 : 3.

Fig. 6
Fig. 6

Line scans at the image plane θ = θ2 = 180° of the magnetic energy density for different cases of oblique angle α = 18°, 27° and 36°. Other parameters are the same as Fig. 5.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ = β + tan ( α ) ln r a r
ε ¯ u , v = ε 0 [ ε u 0 0 ε v ] ,
k u 2 ε v + k v 2 ε u = k 0 2 ,

Metrics