Abstract

We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Israelachvili and G. E. Adams, “Measurement of forces between 2 mica surfaces in aqueous electrolyte solutions in range 0-100 nm,” J. Chem. Soc, Faraday Trans. 1 F74, 975–1001 (1978).
    [CrossRef]
  2. W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature353(6341), 239–241 (1991).
    [CrossRef]
  3. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5(6), 491–505 (2008).
    [CrossRef] [PubMed]
  4. M. A. Bevan and S. L. Eichmann, “Optical microscopy measurements of kT-scale colloidal interactions,” Curr. Opin. Colloid Interface Sci.16(2), 149–157 (2011).
    [CrossRef]
  5. M. B. Hochrein, J. A. Leierseder, L. Golubović, and J. O. Rädler, “DNA localization and stretching on periodically microstructured lipid membranes,” Phys. Rev. Lett.96(3), 038103 (2006).
    [CrossRef] [PubMed]
  6. M. Krishnan, I. Mönch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett.7(5), 1270–1275 (2007).
    [CrossRef] [PubMed]
  7. M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(4), 041406 (2007).
    [CrossRef] [PubMed]
  8. M. A. Bevan and D. C. Prieve, “Direct measurement of retarded van der Waals attraction,” Langmuir15(23), 7925–7936 (1999).
    [CrossRef]
  9. P. Bahukudumbi and M. A. Bevan, “Imaging energy landscapes with concentrated diffusing colloidal probes,” J. Chem. Phys.126(24), 244702 (2007).
    [CrossRef] [PubMed]
  10. A. D. Dinsmore, D. T. Wong, P. Nelson, and A. G. Yodh, “Hard spheres in vesicles: curvature-induced forces and particle-induced curvature,” Phys. Rev. Lett.80(2), 409–412 (1998).
    [CrossRef]
  11. F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008).
    [CrossRef] [PubMed]
  12. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
    [CrossRef] [PubMed]
  13. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
    [CrossRef] [PubMed]
  14. V. Heinrich, W. P. Wong, K. Halvorsen, and E. Evans, “Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles,” Langmuir24(4), 1194–1203 (2008).
    [CrossRef] [PubMed]
  15. S. L. Eichmann, S. G. Anekal, and M. A. Bevan, “Electrostatically confined nanoparticle interactions and dynamics,” Langmuir24(3), 714–721 (2008).
    [CrossRef] [PubMed]
  16. S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express15(4), 1505–1512 (2007).
    [CrossRef] [PubMed]
  17. A. Sato, Q. D. Pham, S. Hasegawa, and Y. Hayasaki, “Three-dimensional subpixel estimation in holographic position measurement of an optically trapped nanoparticle,” Appl. Opt.52(1), A216–A222 (2013).
    [CrossRef] [PubMed]
  18. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett.95(2), 021103 (2009).
    [CrossRef]
  19. M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010).
    [CrossRef] [PubMed]
  20. M. Speidel, A. Jonás, and E. L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett.28(2), 69–71 (2003).
    [CrossRef] [PubMed]
  21. Z. P. Zhang and C. H. Menq, “Three-dimensional particle tracking with subnanometer resolution using off-focus images,” Appl. Opt.47(13), 2361–2370 (2008).
    [CrossRef] [PubMed]
  22. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett.32(7), 811–813 (2007).
    [CrossRef] [PubMed]
  23. S. Jin, P. M. Haggie, and A. S. Verkman, “Single-particle tracking of membrane protein diffusion in a potential: Simulation, detection, and application to confined diffusion of CFTR Cl- channels,” Biophys. J.93(3), 1079–1088 (2007).
    [CrossRef] [PubMed]
  24. W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express14(25), 12517–12531 (2006).
    [CrossRef] [PubMed]
  25. V. Jacobsen, E. Klotzsch, and V. Sandoghdar, “Interferometric detection and tracking of nanoparticles,” in Nano Biophotonics: Science and Technology, H. Masuhara, S. Kawata, and F. Tokunaga, eds. (Elsevier, 2007).
  26. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett.93(3), 037401 (2004).
    [CrossRef] [PubMed]
  27. J. Ortega-Arroyo and P. Kukura, “Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy,” Phys. Chem. Chem. Phys.14(45), 15625–15636 (2012).
    [CrossRef] [PubMed]
  28. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2011).
  29. M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, “Geometry-induced electrostatic trapping of nanometric objects in a fluid,” Nature467(7316), 692–695 (2010).
    [CrossRef] [PubMed]
  30. N. Mojarad and M. Krishnan, “Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap,” Nat. Nanotechnol.7(7), 448–452 (2012).
    [CrossRef] [PubMed]
  31. P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
    [CrossRef] [PubMed]
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007).
  33. M. Meier and A. Wokaun, “Enhanced fields on large metal particles - dynamic depolarization,” Opt. Lett.8(11), 581–583 (1983).
    [CrossRef] [PubMed]
  34. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lon. Ser-A 253, 358–379 (1959).
  35. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  36. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
    [CrossRef] [PubMed]
  37. J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
    [CrossRef] [PubMed]
  38. G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
    [CrossRef] [PubMed]
  39. N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Eur. Opt. Soc.- Rapid Publ.4, 09014 (2009).
    [CrossRef]
  40. T. Savin and P. S. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 041106 (2005).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

J. Ortega-Arroyo and P. Kukura, “Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy,” Phys. Chem. Chem. Phys.14(45), 15625–15636 (2012).
[CrossRef] [PubMed]

N. Mojarad and M. Krishnan, “Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap,” Nat. Nanotechnol.7(7), 448–452 (2012).
[CrossRef] [PubMed]

2011 (1)

M. A. Bevan and S. L. Eichmann, “Optical microscopy measurements of kT-scale colloidal interactions,” Curr. Opin. Colloid Interface Sci.16(2), 149–157 (2011).
[CrossRef]

2010 (3)

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
[CrossRef] [PubMed]

M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, “Geometry-induced electrostatic trapping of nanometric objects in a fluid,” Nature467(7316), 692–695 (2010).
[CrossRef] [PubMed]

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010).
[CrossRef] [PubMed]

2009 (4)

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Eur. Opt. Soc.- Rapid Publ.4, 09014 (2009).
[CrossRef]

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
[CrossRef] [PubMed]

J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
[CrossRef] [PubMed]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett.95(2), 021103 (2009).
[CrossRef]

2008 (5)

V. Heinrich, W. P. Wong, K. Halvorsen, and E. Evans, “Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles,” Langmuir24(4), 1194–1203 (2008).
[CrossRef] [PubMed]

S. L. Eichmann, S. G. Anekal, and M. A. Bevan, “Electrostatically confined nanoparticle interactions and dynamics,” Langmuir24(3), 714–721 (2008).
[CrossRef] [PubMed]

F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008).
[CrossRef] [PubMed]

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5(6), 491–505 (2008).
[CrossRef] [PubMed]

Z. P. Zhang and C. H. Menq, “Three-dimensional particle tracking with subnanometer resolution using off-focus images,” Appl. Opt.47(13), 2361–2370 (2008).
[CrossRef] [PubMed]

2007 (6)

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett.32(7), 811–813 (2007).
[CrossRef] [PubMed]

S. Jin, P. M. Haggie, and A. S. Verkman, “Single-particle tracking of membrane protein diffusion in a potential: Simulation, detection, and application to confined diffusion of CFTR Cl- channels,” Biophys. J.93(3), 1079–1088 (2007).
[CrossRef] [PubMed]

S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express15(4), 1505–1512 (2007).
[CrossRef] [PubMed]

M. Krishnan, I. Mönch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett.7(5), 1270–1275 (2007).
[CrossRef] [PubMed]

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(4), 041406 (2007).
[CrossRef] [PubMed]

P. Bahukudumbi and M. A. Bevan, “Imaging energy landscapes with concentrated diffusing colloidal probes,” J. Chem. Phys.126(24), 244702 (2007).
[CrossRef] [PubMed]

2006 (2)

M. B. Hochrein, J. A. Leierseder, L. Golubović, and J. O. Rädler, “DNA localization and stretching on periodically microstructured lipid membranes,” Phys. Rev. Lett.96(3), 038103 (2006).
[CrossRef] [PubMed]

W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express14(25), 12517–12531 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Savin and P. S. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 041106 (2005).
[CrossRef] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett.93(3), 037401 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
[CrossRef] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

1999 (1)

M. A. Bevan and D. C. Prieve, “Direct measurement of retarded van der Waals attraction,” Langmuir15(23), 7925–7936 (1999).
[CrossRef]

1998 (1)

A. D. Dinsmore, D. T. Wong, P. Nelson, and A. G. Yodh, “Hard spheres in vesicles: curvature-induced forces and particle-induced curvature,” Phys. Rev. Lett.80(2), 409–412 (1998).
[CrossRef]

1991 (1)

W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature353(6341), 239–241 (1991).
[CrossRef]

1983 (1)

1978 (1)

J. N. Israelachvili and G. E. Adams, “Measurement of forces between 2 mica surfaces in aqueous electrolyte solutions in range 0-100 nm,” J. Chem. Soc, Faraday Trans. 1 F74, 975–1001 (1978).
[CrossRef]

Adams, G. E.

J. N. Israelachvili and G. E. Adams, “Measurement of forces between 2 mica surfaces in aqueous electrolyte solutions in range 0-100 nm,” J. Chem. Soc, Faraday Trans. 1 F74, 975–1001 (1978).
[CrossRef]

Agio, M.

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Eur. Opt. Soc.- Rapid Publ.4, 09014 (2009).
[CrossRef]

Anekal, S. G.

S. L. Eichmann, S. G. Anekal, and M. A. Bevan, “Electrostatically confined nanoparticle interactions and dynamics,” Langmuir24(3), 714–721 (2008).
[CrossRef] [PubMed]

Badieirostami, M.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010).
[CrossRef] [PubMed]

Badizadegan, K.

Bahukudumbi, P.

P. Bahukudumbi and M. A. Bevan, “Imaging energy landscapes with concentrated diffusing colloidal probes,” J. Chem. Phys.126(24), 244702 (2007).
[CrossRef] [PubMed]

Bechinger, C.

F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008).
[CrossRef] [PubMed]

Bevan, M. A.

M. A. Bevan and S. L. Eichmann, “Optical microscopy measurements of kT-scale colloidal interactions,” Curr. Opin. Colloid Interface Sci.16(2), 149–157 (2011).
[CrossRef]

S. L. Eichmann, S. G. Anekal, and M. A. Bevan, “Electrostatically confined nanoparticle interactions and dynamics,” Langmuir24(3), 714–721 (2008).
[CrossRef] [PubMed]

P. Bahukudumbi and M. A. Bevan, “Imaging energy landscapes with concentrated diffusing colloidal probes,” J. Chem. Phys.126(24), 244702 (2007).
[CrossRef] [PubMed]

M. A. Bevan and D. C. Prieve, “Direct measurement of retarded van der Waals attraction,” Langmuir15(23), 7925–7936 (1999).
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Brown, P. O.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010).
[CrossRef] [PubMed]

Casolari, J. M.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010).
[CrossRef] [PubMed]

Daaboul, G. G.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
[CrossRef] [PubMed]

Dasari, R. R.

Diez, S.

J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
[CrossRef] [PubMed]

Dinsmore, A. D.

A. D. Dinsmore, D. T. Wong, P. Nelson, and A. G. Yodh, “Hard spheres in vesicles: curvature-induced forces and particle-induced curvature,” Phys. Rev. Lett.80(2), 409–412 (1998).
[CrossRef]

Doyle, P. S.

T. Savin and P. S. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 041106 (2005).
[CrossRef] [PubMed]

Ducker, W. A.

W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature353(6341), 239–241 (1991).
[CrossRef]

Eichmann, S. L.

M. A. Bevan and S. L. Eichmann, “Optical microscopy measurements of kT-scale colloidal interactions,” Curr. Opin. Colloid Interface Sci.16(2), 149–157 (2011).
[CrossRef]

S. L. Eichmann, S. G. Anekal, and M. A. Bevan, “Electrostatically confined nanoparticle interactions and dynamics,” Langmuir24(3), 714–721 (2008).
[CrossRef] [PubMed]

Evans, E.

V. Heinrich, W. P. Wong, K. Halvorsen, and E. Evans, “Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles,” Langmuir24(4), 1194–1203 (2008).
[CrossRef] [PubMed]

Ewers, H.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
[CrossRef] [PubMed]

Feld, M. S.

Florin, E. L.

Goldberg, B. B.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
[CrossRef] [PubMed]

Golubovic, L.

M. B. Hochrein, J. A. Leierseder, L. Golubović, and J. O. Rädler, “DNA localization and stretching on periodically microstructured lipid membranes,” Phys. Rev. Lett.96(3), 038103 (2006).
[CrossRef] [PubMed]

Greengard, A.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett.95(2), 021103 (2009).
[CrossRef]

Grier, D. G.

S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express15(4), 1505–1512 (2007).
[CrossRef] [PubMed]

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(4), 041406 (2007).
[CrossRef] [PubMed]

Haggie, P. M.

S. Jin, P. M. Haggie, and A. S. Verkman, “Single-particle tracking of membrane protein diffusion in a potential: Simulation, detection, and application to confined diffusion of CFTR Cl- channels,” Biophys. J.93(3), 1079–1088 (2007).
[CrossRef] [PubMed]

Halvorsen, K.

V. Heinrich, W. P. Wong, K. Halvorsen, and E. Evans, “Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles,” Langmuir24(4), 1194–1203 (2008).
[CrossRef] [PubMed]

W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express14(25), 12517–12531 (2006).
[CrossRef] [PubMed]

Han, Y.

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(4), 041406 (2007).
[CrossRef] [PubMed]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Hasegawa, S.

Hayasaki, Y.

Heinrich, V.

V. Heinrich, W. P. Wong, K. Halvorsen, and E. Evans, “Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles,” Langmuir24(4), 1194–1203 (2008).
[CrossRef] [PubMed]

Helden, L.

F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008).
[CrossRef] [PubMed]

Helenius, A.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
[CrossRef] [PubMed]

Hertlein, C.

F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008).
[CrossRef] [PubMed]

Hess, H.

J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
[CrossRef] [PubMed]

Hochrein, M. B.

M. B. Hochrein, J. A. Leierseder, L. Golubović, and J. O. Rädler, “DNA localization and stretching on periodically microstructured lipid membranes,” Phys. Rev. Lett.96(3), 038103 (2006).
[CrossRef] [PubMed]

Hwang, G. M.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
[CrossRef] [PubMed]

Ionov, L.

J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
[CrossRef] [PubMed]

Israelachvili, J. N.

J. N. Israelachvili and G. E. Adams, “Measurement of forces between 2 mica surfaces in aqueous electrolyte solutions in range 0-100 nm,” J. Chem. Soc, Faraday Trans. 1 F74, 975–1001 (1978).
[CrossRef]

Jin, S.

S. Jin, P. M. Haggie, and A. S. Verkman, “Single-particle tracking of membrane protein diffusion in a potential: Simulation, detection, and application to confined diffusion of CFTR Cl- channels,” Biophys. J.93(3), 1079–1088 (2007).
[CrossRef] [PubMed]

Jonás, A.

Kalkbrenner, T.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett.93(3), 037401 (2004).
[CrossRef] [PubMed]

Kerssemakers, J.

J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
[CrossRef] [PubMed]

Krishnan, M.

N. Mojarad and M. Krishnan, “Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap,” Nat. Nanotechnol.7(7), 448–452 (2012).
[CrossRef] [PubMed]

M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, “Geometry-induced electrostatic trapping of nanometric objects in a fluid,” Nature467(7316), 692–695 (2010).
[CrossRef] [PubMed]

M. Krishnan, I. Mönch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett.7(5), 1270–1275 (2007).
[CrossRef] [PubMed]

Kukura, P.

J. Ortega-Arroyo and P. Kukura, “Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy,” Phys. Chem. Chem. Phys.14(45), 15625–15636 (2012).
[CrossRef] [PubMed]

M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, “Geometry-induced electrostatic trapping of nanometric objects in a fluid,” Nature467(7316), 692–695 (2010).
[CrossRef] [PubMed]

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
[CrossRef] [PubMed]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Lee, S. H.

Leierseder, J. A.

M. B. Hochrein, J. A. Leierseder, L. Golubović, and J. O. Rädler, “DNA localization and stretching on periodically microstructured lipid membranes,” Phys. Rev. Lett.96(3), 038103 (2006).
[CrossRef] [PubMed]

Lindfors, K.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett.93(3), 037401 (2004).
[CrossRef] [PubMed]

Luna, S.

J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
[CrossRef] [PubMed]

Meier, M.

Menq, C. H.

Moerner, W. E.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010).
[CrossRef] [PubMed]

Mojarad, N.

N. Mojarad and M. Krishnan, “Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap,” Nat. Nanotechnol.7(7), 448–452 (2012).
[CrossRef] [PubMed]

M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, “Geometry-induced electrostatic trapping of nanometric objects in a fluid,” Nature467(7316), 692–695 (2010).
[CrossRef] [PubMed]

Mojarad, N. M.

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Eur. Opt. Soc.- Rapid Publ.4, 09014 (2009).
[CrossRef]

Mönch, I.

M. Krishnan, I. Mönch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett.7(5), 1270–1275 (2007).
[CrossRef] [PubMed]

Müller, C.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
[CrossRef] [PubMed]

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5(6), 491–505 (2008).
[CrossRef] [PubMed]

Nelson, P.

A. D. Dinsmore, D. T. Wong, P. Nelson, and A. G. Yodh, “Hard spheres in vesicles: curvature-induced forces and particle-induced curvature,” Phys. Rev. Lett.80(2), 409–412 (1998).
[CrossRef]

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5(6), 491–505 (2008).
[CrossRef] [PubMed]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Ortega-Arroyo, J.

J. Ortega-Arroyo and P. Kukura, “Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy,” Phys. Chem. Chem. Phys.14(45), 15625–15636 (2012).
[CrossRef] [PubMed]

Park, Y.

Pashley, R. M.

W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature353(6341), 239–241 (1991).
[CrossRef]

Pavani, S. R. P.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett.95(2), 021103 (2009).
[CrossRef]

Pham, Q. D.

Piestun, R.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett.95(2), 021103 (2009).
[CrossRef]

Polin, M.

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(4), 041406 (2007).
[CrossRef] [PubMed]

Popescu, G.

Prieve, D. C.

M. A. Bevan and D. C. Prieve, “Direct measurement of retarded van der Waals attraction,” Langmuir15(23), 7925–7936 (1999).
[CrossRef]

Queitsch, U.

J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
[CrossRef] [PubMed]

Rädler, J. O.

M. B. Hochrein, J. A. Leierseder, L. Golubović, and J. O. Rädler, “DNA localization and stretching on periodically microstructured lipid membranes,” Phys. Rev. Lett.96(3), 038103 (2006).
[CrossRef] [PubMed]

Renn, A.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
[CrossRef] [PubMed]

Sandoghdar, V.

M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, “Geometry-induced electrostatic trapping of nanometric objects in a fluid,” Nature467(7316), 692–695 (2010).
[CrossRef] [PubMed]

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
[CrossRef] [PubMed]

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Eur. Opt. Soc.- Rapid Publ.4, 09014 (2009).
[CrossRef]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett.93(3), 037401 (2004).
[CrossRef] [PubMed]

Sato, A.

Savin, T.

T. Savin and P. S. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 041106 (2005).
[CrossRef] [PubMed]

Schwille, P.

M. Krishnan, I. Mönch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett.7(5), 1270–1275 (2007).
[CrossRef] [PubMed]

Senden, T. J.

W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature353(6341), 239–241 (1991).
[CrossRef]

Soyka, F.

F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008).
[CrossRef] [PubMed]

Speidel, M.

Stoller, P.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett.93(3), 037401 (2004).
[CrossRef] [PubMed]

Thompson, M. A.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010).
[CrossRef] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Ünlü, M. S.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
[CrossRef] [PubMed]

Verkman, A. S.

S. Jin, P. M. Haggie, and A. S. Verkman, “Single-particle tracking of membrane protein diffusion in a potential: Simulation, detection, and application to confined diffusion of CFTR Cl- channels,” Biophys. J.93(3), 1079–1088 (2007).
[CrossRef] [PubMed]

Webb, W. W.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
[CrossRef] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Wokaun, A.

Wong, D. T.

A. D. Dinsmore, D. T. Wong, P. Nelson, and A. G. Yodh, “Hard spheres in vesicles: curvature-induced forces and particle-induced curvature,” Phys. Rev. Lett.80(2), 409–412 (1998).
[CrossRef]

Wong, W. P.

V. Heinrich, W. P. Wong, K. Halvorsen, and E. Evans, “Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles,” Langmuir24(4), 1194–1203 (2008).
[CrossRef] [PubMed]

W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express14(25), 12517–12531 (2006).
[CrossRef] [PubMed]

Yodh, A. G.

A. D. Dinsmore, D. T. Wong, P. Nelson, and A. G. Yodh, “Hard spheres in vesicles: curvature-induced forces and particle-induced curvature,” Phys. Rev. Lett.80(2), 409–412 (1998).
[CrossRef]

Yurt, A.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
[CrossRef] [PubMed]

Zhang, X.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
[CrossRef] [PubMed]

Zhang, Z. P.

Zumofen, G.

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Eur. Opt. Soc.- Rapid Publ.4, 09014 (2009).
[CrossRef]

Zvyagolskaya, O.

F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett.95(2), 021103 (2009).
[CrossRef]

Biophys. J. (3)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

S. Jin, P. M. Haggie, and A. S. Verkman, “Single-particle tracking of membrane protein diffusion in a potential: Simulation, detection, and application to confined diffusion of CFTR Cl- channels,” Biophys. J.93(3), 1079–1088 (2007).
[CrossRef] [PubMed]

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
[CrossRef] [PubMed]

Curr. Opin. Colloid Interface Sci. (1)

M. A. Bevan and S. L. Eichmann, “Optical microscopy measurements of kT-scale colloidal interactions,” Curr. Opin. Colloid Interface Sci.16(2), 149–157 (2011).
[CrossRef]

J. Chem. Phys. (1)

P. Bahukudumbi and M. A. Bevan, “Imaging energy landscapes with concentrated diffusing colloidal probes,” J. Chem. Phys.126(24), 244702 (2007).
[CrossRef] [PubMed]

J. Chem. Soc, Faraday Trans. 1 F (1)

J. N. Israelachvili and G. E. Adams, “Measurement of forces between 2 mica surfaces in aqueous electrolyte solutions in range 0-100 nm,” J. Chem. Soc, Faraday Trans. 1 F74, 975–1001 (1978).
[CrossRef]

J. Eur. Opt. Soc.- Rapid Publ. (1)

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Eur. Opt. Soc.- Rapid Publ.4, 09014 (2009).
[CrossRef]

Langmuir (3)

M. A. Bevan and D. C. Prieve, “Direct measurement of retarded van der Waals attraction,” Langmuir15(23), 7925–7936 (1999).
[CrossRef]

V. Heinrich, W. P. Wong, K. Halvorsen, and E. Evans, “Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles,” Langmuir24(4), 1194–1203 (2008).
[CrossRef] [PubMed]

S. L. Eichmann, S. G. Anekal, and M. A. Bevan, “Electrostatically confined nanoparticle interactions and dynamics,” Langmuir24(3), 714–721 (2008).
[CrossRef] [PubMed]

Nano Lett. (3)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

M. Krishnan, I. Mönch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett.7(5), 1270–1275 (2007).
[CrossRef] [PubMed]

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett.10(11), 4727–4731 (2010).
[CrossRef] [PubMed]

Nat. Methods (2)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5(6), 491–505 (2008).
[CrossRef] [PubMed]

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6(12), 923–927 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

N. Mojarad and M. Krishnan, “Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap,” Nat. Nanotechnol.7(7), 448–452 (2012).
[CrossRef] [PubMed]

Nature (2)

M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, “Geometry-induced electrostatic trapping of nanometric objects in a fluid,” Nature467(7316), 692–695 (2010).
[CrossRef] [PubMed]

W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature353(6341), 239–241 (1991).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

J. Ortega-Arroyo and P. Kukura, “Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy,” Phys. Chem. Chem. Phys.14(45), 15625–15636 (2012).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(4), 041406 (2007).
[CrossRef] [PubMed]

T. Savin and P. S. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 041106 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

M. B. Hochrein, J. A. Leierseder, L. Golubović, and J. O. Rädler, “DNA localization and stretching on periodically microstructured lipid membranes,” Phys. Rev. Lett.96(3), 038103 (2006).
[CrossRef] [PubMed]

A. D. Dinsmore, D. T. Wong, P. Nelson, and A. G. Yodh, “Hard spheres in vesicles: curvature-induced forces and particle-induced curvature,” Phys. Rev. Lett.80(2), 409–412 (1998).
[CrossRef]

F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden, and C. Bechinger, “Critical Casimir forces in colloidal suspensions on chemically patterned surfaces,” Phys. Rev. Lett.101(20), 208301 (2008).
[CrossRef] [PubMed]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett.93(3), 037401 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.107(42), 17864–17871 (2010).
[CrossRef] [PubMed]

Small (1)

J. Kerssemakers, L. Ionov, U. Queitsch, S. Luna, H. Hess, and S. Diez, “3D nanometer tracking of motile microtubules on reflective surfaces,” Small5(15), 1732–1737 (2009).
[CrossRef] [PubMed]

Other (5)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lon. Ser-A 253, 358–379 (1959).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007).

J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2011).

V. Jacobsen, E. Klotzsch, and V. Sandoghdar, “Interferometric detection and tracking of nanoparticles,” in Nano Biophotonics: Science and Technology, H. Masuhara, S. Kawata, and F. Tokunaga, eds. (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Atomic force micrograph of an array of 500 nm pockets separated by 3 μm. (b) Line plot of the topography of one pocket indicated in (a). (c) Schematic of the electrostatic potential between two parallel walls separated by a smaller (left) and larger (right) gap.

Fig. 2
Fig. 2

(a) Schematic of electromagnetic fields involved in forming an iSCAT image in the trapping device. (b) iSCAT image of a trapped 80 nm gold nanoparticle (left) and a D = 500 nm pocket (right). The intensity profile along the dashed line in each image is plotted in the graph below it.

Fig. 3
Fig. 3

(a) Scatter plots of lateral motion for representative 80 nm gold particles trapped by D = 500 nm (red), 200 nm (blue), and 100 nm (green) pockets acquired with σ=1ms . (b) Averaged radial and (c) axial probability density distributions obtained by tracking an ensemble of particles trapped by the three pocket geometries. (d), (e), (f) 3D scatter plots of representative particles trapped in the three geometries and (g), (h), (i) their overlay on the corresponding calculated electrostatic potential distribution. The panels under (h) and (i) represent the same plots magnified 3 and 8 times respectively. The electrostatic potential is presented on a color scale going from high (black) to low energy (yellow) for a unit negative charge. For emphasis, only the minimum of the well is shown.

Fig. 4
Fig. 4

(a) Calculated electromagnetic field intensity (in logarithmic scale) of a focused Gaussian beam propagating in water and reflecting off a Si surface 170 nm away from the focus. The intensity scale bar indicates the intensity in logarithmic scale, the solid lines show the geometry of the D = 200nm trapping pocket in a slit of depth d = 215 nm and the points highlighted by the arrow represent the scatter plot displayed in Fig. 3(h). (b) The black line is the axial profile of the total intensity in (a) along x = 0 indicated by the dashed line. z is the axial distance from the beam focus. The yellow line is the intensity in the absence of the reflected field. (c) Schematic drawing of the particles attached to the SiO2/H2O interface used to determine the calibration function for axial motion. (d) Curves used to calibrate the motion of particles trapped by D = 500 nm (red), 200 nm (blue), and 100 nm (green) pockets. The solid segments of each curve represent the axial range sampled by corresponding levitating particles. The black line represents the calibration curve for trapping by the D = 200 nm pocket, when not taking the standing wave effect into account.

Fig. 5
Fig. 5

Measured lateral (red) and axial (blue) localization precision dependence on the contrast of 80nm particles trapped by a D = 500 nm pocket.

Fig. 6
Fig. 6

Calculated dependence of m s on particle size (black curve) and size estimates of 18 gold nanoparticles trapped by D = 200 nm pockets.

Tables (1)

Tables Icon

Table 1 Geometrical parameters of the devices and predicted and ensemble-averaged measured midplanes of levitation. All units are in nanometers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I d = | E ref + E bd + E pok | 2 | E ref | 2 +2Re{ E ref E bd * }+2Re{ E ref E pok * }.
I(z)= I 0 cos[ 2 k w (2h+d)+2 k s (ld)2 k w z+ φ sys ].
I( z 1 )= I 0 cos( 4 k w h+2 k s l2 k w z 1 + φ sys ).

Metrics