Abstract

Depositing very thin organic films on the surface of arrays of asymmetric split-ring resonators (A-SRRs) produces a shift in their resonance spectra that can be utilized for sensitive analyte detection. Here we show that when poly-methyl-methacrylate (PMMA) is used as an organic probe (analyte) on top of the A-SRR array, the phase and amplitude of a characteristic molecular Fano resonance associated with a carbonyl bond changes according to the spectral positions of the trapped mode resonance of the A-SRRs and their plasmonic reflection peaks. Furthermore, we localize blocks of PMMA at different locations on the A-SRR array to determine the effectiveness of detection of very small amounts of non-uniformly distributed analyte.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
    [CrossRef]
  2. P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
    [CrossRef]
  3. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
    [CrossRef] [PubMed]
  5. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
    [CrossRef]
  6. J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express16(3), 1529–1545 (2008).
    [CrossRef] [PubMed]
  7. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
    [CrossRef]
  8. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
    [CrossRef] [PubMed]
  9. P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011).
    [CrossRef]
  10. E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).
  11. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
    [CrossRef] [PubMed]
  12. I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011).
    [CrossRef] [PubMed]
  13. B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett.98(153116), 1–3 (2011).
  14. D. H. Williams and I. Fleming, “Spectroscopic methods in organic chemistry,” (McGraw Hill Publication, 1973) 2nd Edition. Chapter 2.
  15. A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and spectral characterization of Poly(Methyl Methacrylate) /Hydroxyapatite composite for biomedical applications,” Trends Biomaterials Artif Organs.18, 41–45 (2004).
  16. L. H. Lee and W. C. Chen, “High refractive index thin films prepared from Trialkoxysilane-capped Poly(methyl methacrylate)-Titania hybrid materials,” Chem. Mater.13(3), 1137–1142 (2001).
    [CrossRef]
  17. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33, 1623–1625 (2008).
  18. A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer (Guildf.)43(22), 6027–6035 (2002).
    [CrossRef]

2011 (4)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011).
[CrossRef] [PubMed]

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett.98(153116), 1–3 (2011).

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011).
[CrossRef]

2009 (2)

E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

2004 (2)

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and spectral characterization of Poly(Methyl Methacrylate) /Hydroxyapatite composite for biomedical applications,” Trends Biomaterials Artif Organs.18, 41–45 (2004).

2002 (1)

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer (Guildf.)43(22), 6027–6035 (2002).
[CrossRef]

2001 (1)

L. H. Lee and W. C. Chen, “High refractive index thin films prepared from Trialkoxysilane-capped Poly(methyl methacrylate)-Titania hybrid materials,” Chem. Mater.13(3), 1137–1142 (2001).
[CrossRef]

2000 (1)

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Aizpurua, J.

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011).
[CrossRef] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011).
[CrossRef] [PubMed]

Balamurugan, A.

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and spectral characterization of Poly(Methyl Methacrylate) /Hydroxyapatite composite for biomedical applications,” Trends Biomaterials Artif Organs.18, 41–45 (2004).

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Bartal, G.

E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).

Basserhoff, A.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Bosserhoff, A.

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

Brehm, M.

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011).
[CrossRef] [PubMed]

Brucherseifer, M.

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Buttner, R.

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Cai, G. W.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011).
[CrossRef]

Chen, W. C.

L. H. Lee and W. C. Chen, “High refractive index thin films prepared from Trialkoxysilane-capped Poly(methyl methacrylate)-Titania hybrid materials,” Chem. Mater.13(3), 1137–1142 (2001).
[CrossRef]

Cubukcu, E.

E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).

De La Rue, R. M.

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett.98(153116), 1–3 (2011).

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

Ding, P.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

García de Abajo, F. J.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Hillenbrand, R.

Hu, W. Q.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011).
[CrossRef]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Johnson, N. P.

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett.98(153116), 1–3 (2011).

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

Kannan, S.

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and spectral characterization of Poly(Methyl Methacrylate) /Hydroxyapatite composite for biomedical applications,” Trends Biomaterials Artif Organs.18, 41–45 (2004).

Kelaita, Y.

I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011).
[CrossRef] [PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Khokhar, A. Z.

Kruz, H.

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

Kurz, H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Kutter, J. P.

Lahiri, B.

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett.98(153116), 1–3 (2011).

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

Lee, L. H.

L. H. Lee and W. C. Chen, “High refractive index thin films prepared from Trialkoxysilane-capped Poly(methyl methacrylate)-Titania hybrid materials,” Chem. Mater.13(3), 1137–1142 (2001).
[CrossRef]

Liang, E. J.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011).
[CrossRef]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

McMeekin, S. G.

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett.98(153116), 1–3 (2011).

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

Mogensen, K. B.

Monterrat, E.

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer (Guildf.)43(22), 6027–6035 (2002).
[CrossRef]

Mortensen, N. A.

Nagel, M.

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Nunes, P. S.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Park, Y-S.

E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011).
[CrossRef] [PubMed]

Rajeswari, S.

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and spectral characterization of Poly(Methyl Methacrylate) /Hydroxyapatite composite for biomedical applications,” Trends Biomaterials Artif Organs.18, 41–45 (2004).

Richter, M.

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Selvaraj, V.

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and spectral characterization of Poly(Methyl Methacrylate) /Hydroxyapatite composite for biomedical applications,” Trends Biomaterials Artif Organs.18, 41–45 (2004).

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Soldera, A.

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer (Guildf.)43(22), 6027–6035 (2002).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Taubner, T.

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Xue, Q. Z.

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011).
[CrossRef]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Zhang, S.

E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).

Zhang, X.

E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).

Zheludev, N. I.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

ACS Nano. (1)

I. M. Pryce, K. Aydin, Y. Kelaita, R. M. Briggs, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano.5, 8167–8174 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett.98(153116), 1–3 (2011).

E. Cubukcu, S. Zhang, Y-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95, 043113 (2009).

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Basserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Chem. Mater. (1)

L. H. Lee and W. C. Chen, “High refractive index thin films prepared from Trialkoxysilane-capped Poly(methyl methacrylate)-Titania hybrid materials,” Chem. Mater.13(3), 1137–1142 (2001).
[CrossRef]

Nat. Mater. (2)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Philos. Trans. R. Soc. Lond. A (1)

P. H. Bolivar, M. Nagel, M. Richter, M. Brucherseifer, H. Kruz, A. Bosserhoff, and R. Buttner, “Label-free THz sensing of genetic sequences towards ‘THZ biochips’,” Philos. Trans. R. Soc. Lond. A362(1815), 323–335 (2004).
[CrossRef]

Photon. Nanostructures (1)

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures9(1), 42–48 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Polymer (Guildf.) (1)

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer (Guildf.)43(22), 6027–6035 (2002).
[CrossRef]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications — explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Trends Biomaterials Artif Organs. (1)

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and spectral characterization of Poly(Methyl Methacrylate) /Hydroxyapatite composite for biomedical applications,” Trends Biomaterials Artif Organs.18, 41–45 (2004).

Other (1)

D. H. Williams and I. Fleming, “Spectroscopic methods in organic chemistry,” (McGraw Hill Publication, 1973) 2nd Edition. Chapter 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Asymmetric split ring resonator (A-SRR) and its subsequent reflectance spectra: (a) Single A-SRR SEM micrograph, showing the orientation of the E-field parallel to the Y axis. (b) Measurements at normal incidence) showing corresponding reflectance spectra. The crest at 4.07 µm wavelength is the resonance of the smaller arc (right-hand). The crest at a wavelength of 5.21 µm is the resonance primarily of the large (left-hand) arc. The trough at 4.81 µm is the trapped mode.

Fig. 2
Fig. 2

Table depicting the shift in the position of the resonance produced by tuning the size of the A-SRRs and loading them with a 110 nm thick layer of PMMA. Black curves depict the original A-SRR reflectance, while red curves denote the shift in the spectra due to loading of PMMA. The second column depicts the corresponding simulations. The spike present at a wavelength of 4.2 µm in all the experimental spectra indicates the presence of atmospheric carbon dioxide.

Fig. 3
Fig. 3

Refractive index and absorption coefficient of PMMA with a Fano type resonance of the carbonyl bond at 5.8 microns.

Fig. 4
Fig. 4

Table depicting the shift in the position of the resonance produced by A-SRRs of diameter 1550 nm when loaded with localized PMMA: (a) Four PMMA blocks at each end of A- SRR arms (b) Two PMMA blocks at diagonally opposite A-SRR arms (c) One PMMA block at only one arm of the A-SRR (d) One PMMA block at the middle of the A-SRR. The first column shows the SEM images with the localized PMMA blocks identified by the white arrows. The second column with solid lines shows the experimental reflectance spectra. Black curves show the original A-SRR reflectance, red curves denotes the shift in the spectra due to loading of localized PMMA. The third column.shows the corresponding simulations.

Fig. 5
Fig. 5

Intensity plots of the induced electric field (in Arbitrary Units) normal to the plane, Ez, at the PMMA resonant wavelength, 5.8 microns. The localized blocks of PMMA are identified by white arrows. (a) Four PMMA blocks at the end of A-SRR arms (b) Two PMMA blocks at diagonally opposite A-SRR arms (c) One PMMA block at only one arm of the A-SRR (d) One PMMA block at the middle of the A-SRR.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

s= Δλ Δn nm/RIU.
s= 600 1.491 =1230nm/RIU.
ε( f )=ε+ ε Lorentz ω o 2 ( ω o 2 2i δ o ω ω 2 ) .

Metrics