Abstract

A novel approach for hard x-ray phase contrast imaging with a laboratory source is reported. The technique is based on total external reflection from the edge of a mirror, aligned to intercept only half of the incident beam. The mirror edge thus produces two beams. The refraction x-rays undergo when interacting with a sample placed before the mirror, causes relative intensity variations between direct and reflected beams. Quantitative phase contrast and pure absorption imaging are demonstrated using this method.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Paganin, Coherent X-Ray Optics (Oxford University, New York, 2006).
  2. K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996).
    [CrossRef] [PubMed]
  3. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
    [CrossRef]
  4. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
    [CrossRef] [PubMed]
  5. V. A. Somenkov, A. K. Tkalich, and S. Shil’stein, “Refraction contrast in X-ray microscopy,” Sov. Phys. Tech. Phys.3, 1309–1311 (1991).
  6. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995).
    [CrossRef]
  7. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
    [CrossRef] [PubMed]
  8. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
    [CrossRef]
  9. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005).
    [CrossRef] [PubMed]
  10. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
    [CrossRef] [PubMed]
  11. A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” Appl. Opt.50(12), 1765–1769 (2011).
    [CrossRef] [PubMed]
  12. A. Olivo, P. C. Diemoz, and A. Bravin, “Amplification of the phase contrast signal at very high x-ray energies,” Opt. Lett.37(5), 915–917 (2012).
    [CrossRef] [PubMed]
  13. P. R. T. Munro, L. Rigon, K. Ignatyev, F. C. M. Lopez, D. Dreossi, R. D. Speller, and A. Olivo, “A quantitative, non-interferometric X-ray phase contrast imaging technique,” Opt. Express21(1), 647–661 (2013).
    [CrossRef] [PubMed]
  14. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, Boston, 2000).
  15. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
    [CrossRef]
  16. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
    [CrossRef]
  17. P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
    [CrossRef] [PubMed]

2013 (1)

2012 (1)

2011 (1)

2005 (3)

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
[CrossRef] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005).
[CrossRef] [PubMed]

2004 (1)

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
[CrossRef]

2003 (1)

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
[CrossRef]

2002 (1)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

2001 (1)

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

1998 (1)

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
[CrossRef]

1997 (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

1996 (1)

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996).
[CrossRef] [PubMed]

1995 (1)

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995).
[CrossRef]

1991 (1)

V. A. Somenkov, A. K. Tkalich, and S. Shil’stein, “Refraction contrast in X-ray microscopy,” Sov. Phys. Tech. Phys.3, 1309–1311 (1991).

Arfelli, F.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Barnea, Z.

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996).
[CrossRef] [PubMed]

Baruchel, J.

P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
[CrossRef] [PubMed]

Bravin, A.

A. Olivo, P. C. Diemoz, and A. Bravin, “Amplification of the phase contrast signal at very high x-ray energies,” Opt. Lett.37(5), 915–917 (2012).
[CrossRef] [PubMed]

P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
[CrossRef] [PubMed]

Cantatore, G.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Castelli, E.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Chapman, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Cloetens, P.

P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
[CrossRef] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005).
[CrossRef] [PubMed]

Coan, P.

P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
[CrossRef] [PubMed]

Cookson, D. J.

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996).
[CrossRef] [PubMed]

David, C.

Davis, T. J.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995).
[CrossRef]

Diaz, A.

Diemoz, P. C.

Dreossi, D.

Fiedler, S.

P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
[CrossRef] [PubMed]

Gao, D.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995).
[CrossRef]

Gillam, J. E.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

Gmür, N.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Gureyev, T. E.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
[CrossRef]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996).
[CrossRef] [PubMed]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995).
[CrossRef]

Hamaishi, Y.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
[CrossRef]

Ignatyev, K.

Johnston, R. E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Kawamoto, S.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
[CrossRef]

Kitchen, M. J.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

Koyama, I.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
[CrossRef]

Lewis, R. A.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
[CrossRef]

Longo, R.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Lopez, F. C. M.

Mayo, S. C.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

Menk, R.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Menk, R. H.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Miller, P. R.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

Momose, A.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
[CrossRef]

Morgan, M. J.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
[CrossRef]

Munro, P. R. T.

Nesterets, Y. I.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
[CrossRef]

Nugent, K. A.

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
[CrossRef]

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996).
[CrossRef] [PubMed]

Olivo, A.

Paganin, D.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
[CrossRef]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
[CrossRef]

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996).
[CrossRef] [PubMed]

Pagot, E.

P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
[CrossRef] [PubMed]

Pani, S.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Pavlov, K. M.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
[CrossRef]

Pfeiffer, F.

Pisano, E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Poropat, P.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Prest, M.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Rigon, L.

P. R. T. Munro, L. Rigon, K. Ignatyev, F. C. M. Lopez, D. Dreossi, R. D. Speller, and A. Olivo, “A quantitative, non-interferometric X-ray phase contrast imaging technique,” Opt. Express21(1), 647–661 (2013).
[CrossRef] [PubMed]

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Sayers, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Shil’stein, S.

V. A. Somenkov, A. K. Tkalich, and S. Shil’stein, “Refraction contrast in X-ray microscopy,” Sov. Phys. Tech. Phys.3, 1309–1311 (1991).

Siu, K. K. W.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

Somenkov, V. A.

V. A. Somenkov, A. K. Tkalich, and S. Shil’stein, “Refraction contrast in X-ray microscopy,” Sov. Phys. Tech. Phys.3, 1309–1311 (1991).

Speller, R. D.

Stampanoni, M.

Stevenson, A. W.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995).
[CrossRef]

Suzuki, Y.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
[CrossRef]

Takai, K.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
[CrossRef]

Thomlinson, W.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Tkalich, A. K.

V. A. Somenkov, A. K. Tkalich, and S. Shil’stein, “Refraction contrast in X-ray microscopy,” Sov. Phys. Tech. Phys.3, 1309–1311 (1991).

Tromba, G.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Uesugi, K.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

Vallazza, E.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Washburn, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Weitkamp, T.

Wilkins, S. W.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995).
[CrossRef]

Yagi, N.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

Zhong, Z.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Ziegler, E.

Appl. Opt. (1)

J. Microsc. (1)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004).
[CrossRef]

J. Synchrotron Radiat. (1)

P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003).
[CrossRef]

Med. Phys. (1)

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001).
[CrossRef] [PubMed]

Nature (1)

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Kitchen, K. K. W. Siu, J. E. Gillam, K. Uesugi, N. Yagi, M. J. Morgan, and R. A. Lewis, “Unification of analyser-based and propagation-based X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res. A548(1-2), 163–168 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996).
[CrossRef] [PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

V. A. Somenkov, A. K. Tkalich, and S. Shil’stein, “Refraction contrast in X-ray microscopy,” Sov. Phys. Tech. Phys.3, 1309–1311 (1991).

Other (2)

R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, Boston, 2000).

D. M. Paganin, Coherent X-Ray Optics (Oxford University, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic drawing of the experimental setup for x-ray phase imaging with a laboratory source using selective reflection from a mirror (not to scale).

Fig. 2
Fig. 2

Measurement of the nylon fiber. (a) Normalized intensity Id(x). (b) Normalized intensity Ir(x). (c) Retrieved projected thickness (d) Refraction image. (e) Comparison of the projected thickness profile (open diamonds) with a theoretical curve (solid line).

Fig. 3
Fig. 3

(a) Absorption, (b) refraction and (c) phase images of a fly.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I d,r (x)= e μ(x)t(x) I d,r ( ξ 0 +Δ x R ).
Δ x R = z 1 Δ θ R = z 1 k Φ x .
I d,r (x) e μ(x)t(x) ( I d,r ( ξ 0 )+Δ x R I d,r ξ | ξ 0 ).
I d (x)+ I r (x)=2 e μ(x)t(x) ,
I d (x) I r (x)=2 z 1 k s e μ(x)t(x) Φ x .
Φ x =kδ t x .
Φ(x)= F 1 [ 1 iq F[ Φ x ] ]

Metrics