Abstract

We report the first experimental realization and detailed characterization of thulium doped fiber amplifiers (TDFAs) specifically designed for optical communications providing high gain (>35 dB), noise figure as low as 5 dB, and over 100 nm wide bandwidth around 2 µm. A maximum saturated output power of 1.2 W was achieved with a slope efficiency of 50%. The gain dynamics of the amplifier were also examined. Our results show that TDFAs are well qualified as high performance amplifiers for possible future telecommunication networks operating around 2 µm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
    [CrossRef]
  2. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28(4), 423–433 (2010).
    [CrossRef]
  3. D. J. Richardson, “Applied physics. Filling the light pipe,” Science330(6002), 327–328 (2010).
    [CrossRef] [PubMed]
  4. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
    [CrossRef]
  5. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
    [CrossRef] [PubMed]
  6. V. Sleiffer, Y. Jung, V. Veljanovski, R. van Uden, M. Kuschnerov, Q. Kang, L. Grüner-Nielsen, Y. Sun, D. Richardson, S.-u. Alam, F. Poletti, J. Sahu, A. Dhar, H. Chen, B. Inan, T. Koonen, B. Corbett, R. Winfield, A. Ellis, and H. De Waardt, “73.7 Tb/s (96X3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” in ECOC (2012), paper Th.3.C.4.
  7. D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun.75(3-4), 283–286 (1990).
    [CrossRef]
  8. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol.17(5), 948–956 (1999).
    [CrossRef]
  9. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express14(13), 6084–6090 (2006).
    [CrossRef] [PubMed]
  10. S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev.3(5), 466–482 (2009).
    [CrossRef]
  11. A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
    [CrossRef]
  12. C.-H. Yeh, C.-C. Lee, and S. Chi, “120-nm bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett.16(7), 1637–1639 (2004).
    [CrossRef]
  13. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett.23(18), 1462–1464 (1998).
    [CrossRef] [PubMed]
  14. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
    [CrossRef]
  15. E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier,” J. Appl. Phys.92(1), 112–117 (2002).
    [CrossRef]
  16. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
    [CrossRef]
  17. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
    [CrossRef]
  18. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “First demonstration of 2µm data transmission in a low-loss hollow core photonic bandgap fiber,” in ECOC (2012), paper Th.3.A.5.
  19. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express20(19), 20980–20991 (2012).
    [CrossRef] [PubMed]
  20. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  21. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm,” Opt. Express17(26), 23468–23473 (2009).
    [CrossRef] [PubMed]
  22. N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Pálsdóttir, L. Grüner-Nielsen, R. Phelan, J. O'Carrol, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2µm,” in ECOC (2012), paper Th.3.A.3.
  23. S. R. Nagel, “Fiber materials and fabrication methods,” in Optical Fiber Telecommunications II, S. E. Miller, and I. P. Kaminow, eds. (Academic Press Inc, 1988).
  24. P. L. Higby, I. D. Aggarwal, and E. J. Friebele, “Low loss glass and optical fibers therefrom,” U.S. Patent 5305414 (1994).
  25. W. Heitmann and K.-F. Klein, “Glass for optical waveguides or the like,” U.S. Patent 6490399 B1 (2002).
  26. J. H. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett.11(1), 42–44 (1999).
    [CrossRef]
  27. J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).
  28. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express14(1), 50–57 (2006).
    [CrossRef] [PubMed]
  29. C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett.14(16), 880–882 (1989).
    [CrossRef] [PubMed]
  30. E. Desurvire, “Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett.1(8), 196–199 (1989).
    [CrossRef]

2013

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

2012

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

2011

2010

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28(4), 423–433 (2010).
[CrossRef]

D. J. Richardson, “Applied physics. Filling the light pipe,” Science330(6002), 327–328 (2010).
[CrossRef] [PubMed]

2009

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev.3(5), 466–482 (2009).
[CrossRef]

J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm,” Opt. Express17(26), 23468–23473 (2009).
[CrossRef] [PubMed]

2007

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

2006

2005

2004

C.-H. Yeh, C.-C. Lee, and S. Chi, “120-nm bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett.16(7), 1637–1639 (2004).
[CrossRef]

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

2002

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier,” J. Appl. Phys.92(1), 112–117 (2002).
[CrossRef]

2001

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

1999

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol.17(5), 948–956 (1999).
[CrossRef]

J. H. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett.11(1), 42–44 (1999).
[CrossRef]

1998

1990

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun.75(3-4), 283–286 (1990).
[CrossRef]

1989

C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett.14(16), 880–882 (1989).
[CrossRef] [PubMed]

E. Desurvire, “Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett.1(8), 196–199 (1989).
[CrossRef]

Agger, S. D.

Ahn, S. J.

J. H. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett.11(1), 42–44 (1999).
[CrossRef]

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

Babin, F.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Bellemare, A.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

Birks, T.

Blanc, W.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Bolle, C. A.

Buerger, H.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier,” J. Appl. Phys.92(1), 112–117 (2002).
[CrossRef]

Chi, S.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120-nm bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett.16(7), 1637–1639 (2004).
[CrossRef]

Clarkson, W. A.

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express14(13), 6084–6090 (2006).
[CrossRef] [PubMed]

J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).

Cotter, D.

Couny, F.

Daniel, J. M. O.

J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).

Desurvire, E.

C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett.14(16), 880–882 (1989).
[CrossRef] [PubMed]

E. Desurvire, “Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett.1(8), 196–199 (1989).
[CrossRef]

Dussardier, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Ellis, A. D.

Essiambre, R.-J.

Farr, L.

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Fokoua, E. N.

Giles, C. R.

Gnauck, A. H.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Hanna, D. C.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun.75(3-4), 283–286 (1990).
[CrossRef]

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

He, G.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev.3(5), 466–482 (2009).
[CrossRef]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol.17(5), 948–956 (1999).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett.23(18), 1462–1464 (1998).
[CrossRef] [PubMed]

Jakobsen, C.

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

King, T. A.

Knight, J.

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

Lee, C.-C.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120-nm bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett.16(7), 1637–1639 (2004).
[CrossRef]

Lee, J. H.

J. H. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett.11(1), 42–44 (1999).
[CrossRef]

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Lingle, R.

Lyngsø, J. K.

Mangan, B.

Mangan, B. J.

Mason, M.

McCurdy, A.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

Ng, L. N.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier,” J. Appl. Phys.92(1), 112–117 (2002).
[CrossRef]

Numkam Fokoua, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Park, N.

J. H. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett.11(1), 42–44 (1999).
[CrossRef]

Peckham, D. W.

Percival, R. M.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun.75(3-4), 283–286 (1990).
[CrossRef]

Peterka, P.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Petrovich, M. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Poletti, F.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

Povlsen, J. H.

Randel, S.

Richardson, D.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

Richardson, D. J.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

D. J. Richardson, “Applied physics. Filling the light pipe,” Science330(6002), 327–328 (2010).
[CrossRef] [PubMed]

Riviere, C.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

Roberts, P.

Roberts, P. J.

Roy, V.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

Ryf, R.

Ryu, U.-C.

J. H. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett.11(1), 42–44 (1999).
[CrossRef]

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

Sabert, H.

Sahu, J. K.

Schinn, G. W.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

Sessions, N. P.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier,” J. Appl. Phys.92(1), 112–117 (2002).
[CrossRef]

Shen, D. Y.

Sierra, A.

Simpson, J. R.

Slavík, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Smart, R. G.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun.75(3-4), 283–286 (1990).
[CrossRef]

St J Russell, P.

Taylor, E. R.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier,” J. Appl. Phys.92(1), 112–117 (2002).
[CrossRef]

Tokurakawa, M.

J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).

Tomlinson, A.

Tropper, A. C.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun.75(3-4), 283–286 (1990).
[CrossRef]

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Williams, D.

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

Winzer, P. J.

Yeh, C.-H.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120-nm bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett.16(7), 1637–1639 (2004).
[CrossRef]

Zhao, J.

IEEE Commun. Mag.

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), s31–s42 (2012).
[CrossRef]

IEEE J. Quantum Electron.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron.7(1), 22–29 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120-nm bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett.16(7), 1637–1639 (2004).
[CrossRef]

J. H. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett.11(1), 42–44 (1999).
[CrossRef]

E. Desurvire, “Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett.1(8), 196–199 (1989).
[CrossRef]

J. Appl. Phys.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier,” J. Appl. Phys.92(1), 112–117 (2002).
[CrossRef]

J. Lightwave Technol.

Laser Photonics Rev.

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev.3(5), 466–482 (2009).
[CrossRef]

Nat. Photonics

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013).
[CrossRef]

Opt. Commun.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun.75(3-4), 283–286 (1990).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Science

D. J. Richardson, “Applied physics. Filling the light pipe,” Science330(6002), 327–328 (2010).
[CrossRef] [PubMed]

Other

V. Sleiffer, Y. Jung, V. Veljanovski, R. van Uden, M. Kuschnerov, Q. Kang, L. Grüner-Nielsen, Y. Sun, D. Richardson, S.-u. Alam, F. Poletti, J. Sahu, A. Dhar, H. Chen, B. Inan, T. Koonen, B. Corbett, R. Winfield, A. Ellis, and H. De Waardt, “73.7 Tb/s (96X3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” in ECOC (2012), paper Th.3.C.4.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Pálsdóttir, L. Grüner-Nielsen, R. Phelan, J. O'Carrol, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2µm,” in ECOC (2012), paper Th.3.A.3.

S. R. Nagel, “Fiber materials and fabrication methods,” in Optical Fiber Telecommunications II, S. E. Miller, and I. P. Kaminow, eds. (Academic Press Inc, 1988).

P. L. Higby, I. D. Aggarwal, and E. J. Friebele, “Low loss glass and optical fibers therefrom,” U.S. Patent 5305414 (1994).

W. Heitmann and K.-F. Klein, “Glass for optical waveguides or the like,” U.S. Patent 6490399 B1 (2002).

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “First demonstration of 2µm data transmission in a low-loss hollow core photonic bandgap fiber,” in ECOC (2012), paper Th.3.A.5.

J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. TLS: tunable laser source. NDF: neutral density filter. L: lens. TDF: Tm3+-doped fiber. WDM: wavelength division multiplexer.

Fig. 2
Fig. 2

Performances of TDFA-C and TDFA-L at 31dBm pump power. (a) Noise figure and gain; the solid lines represent TDFA-L, the dotted lines show TDFA-C performance. (b) Output spectra and noise figure when amplifiers were seeded by −10 dBm signal.

Fig. 3
Fig. 3

Gain and NF of TDFA-L at 2000 nm at different (a) pump and (b) input signal power levels.

Fig. 4
Fig. 4

Efficiency and spectrum of TDFA-L at 1950 nm.

Fig. 5
Fig. 5

Small signal performance in the saturation regime. (a) Influence of the saturating channel on the gain and noise figure of the probe channel. (b) Spectra of 1970 nm probe channel with 2008 nm channel on/off.

Fig. 6
Fig. 6

Gain dynamics of TDFA-L. (a) Normalized input and output signal in the event of signal channel power modulation. Top: modulation channel input; Middle: modulation channel output; Bottom: surviving channel output. (b) Power excursion at different modulation frequencies. (c) Power excursion with respect to pump power (red) and modulation channel power (blue) at 10 Hz modulation frequency. (d) Rise time with respect to pump power (red) and modulated channel power (blue) at 10 Hz modulation frequency.

Metrics