Abstract

For a direct-detection 3D imaging lidar, the use of Geiger mode avalanche photodiode (Gm-APD) could greatly enhance the detection sensitivity of the lidar system since each range measurement requires a single detected photon. Furthermore, Gm-APD offers significant advantages in reducing the size, mass, power and complexity of the system. However the inevitable noise, including the background noise, the dark count noise and so on, remains a significant challenge to obtain a clear 3D image of the target of interest. This paper presents a smart strategy, which can filter out false alarms in the stage of acquisition of raw time of flight (TOF) data and obtain a clear 3D image in real time. As a result, a clear 3D image is taken from the experimental system despite the background noise of the sunny day.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express18(25), 26450–26460 (2010).
    [CrossRef] [PubMed]
  2. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).
  3. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express18(9), 9192–9206 (2010).
    [CrossRef] [PubMed]
  4. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett.22(8), 543–545 (1997).
    [CrossRef] [PubMed]
  5. P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
    [CrossRef]
  6. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt.48(32), 6241–6251 (2009).
    [CrossRef] [PubMed]
  7. M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
    [CrossRef]
  8. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt.42(27), 5388–5398 (2003).
    [CrossRef] [PubMed]
  9. H. J. Kong, T. H. Kim, S. E. Jo, and M. S. Oh, “Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes,” Opt. Express19(20), 19323–19329 (2011).
    [CrossRef] [PubMed]
  10. L. A. Magruder, M. E. Wharton, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LIDAR data,” Proc. SPIE8379, 83790Q (2012).
    [CrossRef]
  11. P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D lidar imaging,” Lincoln Lab. J.16, 147–164 (2006).

2012 (1)

L. A. Magruder, M. E. Wharton, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LIDAR data,” Proc. SPIE8379, 83790Q (2012).
[CrossRef]

2011 (1)

2010 (4)

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express18(25), 26450–26460 (2010).
[CrossRef] [PubMed]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express18(9), 9192–9206 (2010).
[CrossRef] [PubMed]

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
[CrossRef]

2009 (1)

2006 (1)

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D lidar imaging,” Lincoln Lab. J.16, 147–164 (2006).

2003 (1)

2002 (1)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

1997 (1)

Anderson, H.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D lidar imaging,” Lincoln Lab. J.16, 147–164 (2006).

Aull, B. F.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

Bai, X. G.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Boisvert, J.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Buller, G. S.

Cho, P.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D lidar imaging,” Lincoln Lab. J.16, 147–164 (2006).

Collins, R. J.

DaneshPanah, M.

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

Danny, H.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Fancey, S. J.

Felton, B. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

Fernández, V.

Fouche, D. G.

Gaalema, S.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Hatch, R.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D lidar imaging,” Lincoln Lab. J.16, 147–164 (2006).

Heinrichs, R. M.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

Hong, D. H.

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
[CrossRef]

Javidi, B.

Jo, S. E.

Kim, B. W.

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
[CrossRef]

Kim, T. H.

H. J. Kong, T. H. Kim, S. E. Jo, and M. S. Oh, “Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes,” Opt. Express19(20), 19323–19329 (2011).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
[CrossRef]

Kong, H. J.

H. J. Kong, T. H. Kim, S. E. Jo, and M. S. Oh, “Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes,” Opt. Express19(20), 19323–19329 (2011).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
[CrossRef]

Krichel, N. J.

Labios, E.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

Magruder, L. A.

L. A. Magruder, M. E. Wharton, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LIDAR data,” Proc. SPIE8379, 83790Q (2012).
[CrossRef]

Massa, J. S.

McCarthy, A.

McDonald, P.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Neuenschwander, A. L.

L. A. Magruder, M. E. Wharton, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LIDAR data,” Proc. SPIE8379, 83790Q (2012).
[CrossRef]

Oh, M. S.

H. J. Kong, T. H. Kim, S. E. Jo, and M. S. Oh, “Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes,” Opt. Express19(20), 19323–19329 (2011).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
[CrossRef]

Park, D. J.

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
[CrossRef]

Pauls, G.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Portillo, A. A.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Ramaswami, P.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D lidar imaging,” Lincoln Lab. J.16, 147–164 (2006).

Roybal, A. B.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Salisbury, M. S.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Stout, K. D.

L. A. Magruder, M. E. Wharton, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LIDAR data,” Proc. SPIE8379, 83790Q (2012).
[CrossRef]

Stuart, G. M.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Sudharsanan, R.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Van Duyne, S.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Walker, A. C.

Wallace, A. M.

Watson, E. A.

Wharton, M. E.

L. A. Magruder, M. E. Wharton, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LIDAR data,” Proc. SPIE8379, 83790Q (2012).
[CrossRef]

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

Yuan, P.

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

Appl. Opt. (2)

Jpn. J. Appl. Phys. (1)

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys.49(2), 026601 (2010).
[CrossRef]

Lincoln Lab. J. (2)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13(2), 335–350 (2002).

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D lidar imaging,” Lincoln Lab. J.16, 147–164 (2006).

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (2)

P. Yuan, R. Sudharsanan, X. G. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. Van Duyne, G. Pauls, and S. Gaalema, “32 x 32 Geiger-mode LADAR cameras,” Proc. SPIE7684, 76840C (2010).
[CrossRef]

L. A. Magruder, M. E. Wharton, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LIDAR data,” Proc. SPIE8379, 83790Q (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The raw data characteristic of the photon counting 3D imaging lidar. Due to the surface continuity characteristic of most targets of interest, considering the photon counting results of several adjacent pixels in the m × n Gm-APD array, signal (in the dash box) is comparatively centralized near the target position with its surface detail differences and noise (out of the dash box) is randomly distributed on the whole time axis.

Fig. 2
Fig. 2

The working principle for an elementary unit. (a)a m × n Gm-APD array is divided into many elementary units of 3 × 3 pixels. (b) The timing circuit for an elementary unit. Each pixel has the individual clock, and an elementary unit has a master clock. (c) The signal processing flow for 9 pixels of an elementary unit. When the total logic level of all pixels of an elementary unit exceeds a certain threshold, the system considers of detecting the echo signal and all clocks are stopped. Then these counting points of the echo signal are recorded, and however other counting points that are generated by noise are not recorded due to total level (or the counting rate in Δt ) below the threshold.

Fig. 3
Fig. 3

The relationship between H and four variables (N, Δt , N s , N n ).

Fig. 4
Fig. 4

The probability distribution of signal N s (blue lines) and noise N n (red lines). There are different probability distributions with different signal and noise intensities, and the proper threshold that is employed to distinguish them varies. A partial enlargement in the dash box is shown on the top left corner.

Fig. 5
Fig. 5

The proper threshold Y proper with different signal and noise intensities. (The number of pixels in an elementary unit N=9 and Δt=30ns ).

Fig. 6
Fig. 6

The experimental system diagram. BS: Beam Splitter, Timing module is shown as Fig. 2(b).

Fig. 7
Fig. 7

The imaging results. (a) The imaged target. (b) Without threshold. (c) Threshold Y=6 . (d) Threshold Y=7 . (e) Threshold Y=8 . (f) The detail of Fig. 7(d)

Fig. 8
Fig. 8

The range resolution analysis. (a) The ranging results of the close target that is the target A in Fig. 6(a). (b) The ranging results of the far target that is the target B in Fig. 6(a).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P s (x )=C N x [ 1-exp( - N s ) ] N exp ( - N s ) N-x
P n (x )=C N x [ 1-exp( - N n Δt ) ] x exp ( - N n Δt ) N-x
H( N,Δt, N s , N n ,Y )= x=Y x=N P n ( x ) + x=0 x=Y-1 P s ( x )
H= x=Y x=N P n ( x ) + x=0 x=Y-1 P s ( x ) min
( H ) ( Y ) | Y= Y proper = ( x=Y x=N P n ( x ) + x=0 x=Y-1 P s ( x ) ) ( Y ) | Y= Y proper =0

Metrics