H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]
G. X. Wang, H. Lu, and X. M. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
[Crossref]
[PubMed]
Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express 20(22), 24348–24355 (2012).
[Crossref]
[PubMed]
Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[Crossref]
[PubMed]
X. J. Piao, S. Yu, S. Koo, K. H. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express 19(11), 10907–10912 (2011).
[Crossref]
[PubMed]
H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref]
[PubMed]
Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]
Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011).
[Crossref]
L. Yang, C. G. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35(24), 4184–4186 (2010).
[Crossref]
[PubMed]
R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]
[PubMed]
D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]
X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref]
[PubMed]
T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]
T. Baba, “Slow light in photonic crystal,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]
[PubMed]
K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]
[PubMed]
Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]
Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref]
[PubMed]
Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]
S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]
K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]
[PubMed]
H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]
E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]
T. Baba, “Slow light in photonic crystal,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]
[PubMed]
R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]
[PubMed]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]
[PubMed]
Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[Crossref]
[PubMed]
D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]
T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]
R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]
[PubMed]
R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]
[PubMed]
Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]
T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]
E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref]
[PubMed]
T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]
Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]
S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]
K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]
[PubMed]
S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]
H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]
Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]
H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]
Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]
K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]
[PubMed]
Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]
R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]
[PubMed]
K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]
[PubMed]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref]
[PubMed]
Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref]
[PubMed]
H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]
G. X. Wang, H. Lu, and X. M. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
[Crossref]
[PubMed]
H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref]
[PubMed]
G. X. Wang, H. Lu, and X. M. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
[Crossref]
[PubMed]
H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]
H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref]
[PubMed]
H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]
H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref]
[PubMed]
Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]
Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref]
[PubMed]
Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref]
[PubMed]
Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref]
[PubMed]
K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]
[PubMed]
K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]
[PubMed]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]
L. Yang, C. G. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35(24), 4184–4186 (2010).
[Crossref]
[PubMed]
G. X. Wang, H. Lu, and X. M. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
[Crossref]
[PubMed]
H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref]
[PubMed]
X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref]
[PubMed]
Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]
Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref]
[PubMed]
X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref]
[PubMed]
X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref]
[PubMed]
Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011).
[Crossref]
Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]
Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]
Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]
T. Baba, “Slow light in photonic crystal,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]
[PubMed]
D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]
G. X. Wang, H. Lu, and X. M. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
[Crossref]
[PubMed]
Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express 20(22), 24348–24355 (2012).
[Crossref]
[PubMed]
Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[Crossref]
[PubMed]
X. J. Piao, S. Yu, S. Koo, K. H. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express 19(11), 10907–10912 (2011).
[Crossref]
[PubMed]
H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref]
[PubMed]
L. Yang, C. G. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35(24), 4184–4186 (2010).
[Crossref]
[PubMed]
E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]
H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]
Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]
Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]
S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]
H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref]
[PubMed]
Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref]
[PubMed]
X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref]
[PubMed]
K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]
[PubMed]
R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref]
[PubMed]
K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]
[PubMed]
T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]
H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]
H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).
E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).