Abstract

Abstract: We demonstrate a novel on-chip two-mode division multiplexing circuit using a tapered directional coupler-based TE0&TE1 mode multiplexer and demultiplexer on the silicon-on-insulator platform. A low insertion loss (0.3 dB), low mode crosstalk (< −16 dB), wide bandwidth (~100 nm), and large fabrication tolerance (20 nm) are measured. An on-chip mode multiplexing experiment is carried out on the fabricated circuit with non return-to-zero (NRZ) on-off keying (OOK) signals at 40 Gbit/s. The experimental results show clear eye diagrams and moderate power penalty for both TE0 and TE1 modes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
    [CrossRef]
  2. B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
    [CrossRef]
  3. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt.21(11), 1950–1955 (1982).
    [CrossRef] [PubMed]
  4. G. J. Veldhuis, J. H. Berends, and P. V. Lambeck, “Design and characterization of a mode-splitting Ψ-junction,” J. Lightwave Technol.14(7), 1746–1752 (1996).
    [CrossRef]
  5. K. Shirafuji and S. Kurazono, “Transmission characteristics of optical asymmetric Y junction with a gap region,” J. Lightwave Technol.9(4), 426–429 (1991).
    [CrossRef]
  6. J. D. Love and N. Riesen, “Single-, few-, and multimode Y-junctions,” J. Lightwave Technol.30(3), 304–309 (2012).
    [CrossRef]
  7. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt.51(15), 2778–2783 (2012).
    [CrossRef] [PubMed]
  8. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
    [CrossRef]
  9. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol.30(15), 2421–2426 (2012).
    [CrossRef]
  10. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express13(23), 9381–9387 (2005).
    [CrossRef] [PubMed]
  11. M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun.266(2), 527–531 (2006).
    [CrossRef]
  12. S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
    [CrossRef]
  13. D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” in Asia Communications and Photonics Conference, (Guangzhou, China, 2012), ATh3B.3.
    [CrossRef]
  14. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.4.
    [CrossRef]
  15. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express20(18), 20021–20027 (2012).
    [CrossRef] [PubMed]
  16. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .

2012

2008

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

2007

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

2006

M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun.266(2), 527–531 (2006).
[CrossRef]

2005

2002

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
[CrossRef]

1996

G. J. Veldhuis, J. H. Berends, and P. V. Lambeck, “Design and characterization of a mode-splitting Ψ-junction,” J. Lightwave Technol.14(7), 1746–1752 (1996).
[CrossRef]

1991

K. Shirafuji and S. Kurazono, “Transmission characteristics of optical asymmetric Y junction with a gap region,” J. Lightwave Technol.9(4), 426–429 (1991).
[CrossRef]

1982

Bagheri, S.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[CrossRef]

Berdagué, S.

Berends, J. H.

G. J. Veldhuis, J. H. Berends, and P. V. Lambeck, “Design and characterization of a mode-splitting Ψ-junction,” J. Lightwave Technol.14(7), 1746–1752 (1996).
[CrossRef]

Bergman, K.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Biberman, A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Chou, C. Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Dadap, J. I.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Ding, Y.

Facq, P.

Green, W. M. J.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[CrossRef]

Greenberg, M.

M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun.266(2), 527–531 (2006).
[CrossRef]

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express13(23), 9381–9387 (2005).
[CrossRef] [PubMed]

Hsieh, I. W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Ishizaka, Y.

Kawaguchi, Y.

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Koshiba, M.

Kurazono, S.

K. Shirafuji and S. Kurazono, “Transmission characteristics of optical asymmetric Y junction with a gap region,” J. Lightwave Technol.9(4), 426–429 (1991).
[CrossRef]

Lambeck, P. V.

G. J. Veldhuis, J. H. Berends, and P. V. Lambeck, “Design and characterization of a mode-splitting Ψ-junction,” J. Lightwave Technol.14(7), 1746–1752 (1996).
[CrossRef]

Lee, B. G.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Liu, L.

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Love, J. D.

Orenstein, M.

M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun.266(2), 527–531 (2006).
[CrossRef]

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express13(23), 9381–9387 (2005).
[CrossRef] [PubMed]

Osgood, R. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Ou, H.

Peucheret, C.

Riesen, N.

Saitoh, K.

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Shirafuji, K.

K. Shirafuji and S. Kurazono, “Transmission characteristics of optical asymmetric Y junction with a gap region,” J. Lightwave Technol.9(4), 426–429 (1991).
[CrossRef]

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
[CrossRef]

Uematsu, T.

Veldhuis, G. J.

G. J. Veldhuis, J. H. Berends, and P. V. Lambeck, “Design and characterization of a mode-splitting Ψ-junction,” J. Lightwave Technol.14(7), 1746–1752 (1996).
[CrossRef]

Vlasov, Y. A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

Appl. Opt.

Electron. Lett.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett.20(6), 398–400 (2008).
[CrossRef]

J. Lightwave Technol.

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol.30(15), 2421–2426 (2012).
[CrossRef]

G. J. Veldhuis, J. H. Berends, and P. V. Lambeck, “Design and characterization of a mode-splitting Ψ-junction,” J. Lightwave Technol.14(7), 1746–1752 (1996).
[CrossRef]

K. Shirafuji and S. Kurazono, “Transmission characteristics of optical asymmetric Y junction with a gap region,” J. Lightwave Technol.9(4), 426–429 (1991).
[CrossRef]

J. D. Love and N. Riesen, “Single-, few-, and multimode Y-junctions,” J. Lightwave Technol.30(3), 304–309 (2012).
[CrossRef]

Nat. Photonics

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Opt. Commun.

M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun.266(2), 527–531 (2006).
[CrossRef]

Opt. Express

Other

FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[CrossRef]

D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” in Asia Communications and Photonics Conference, (Guangzhou, China, 2012), ATh3B.3.
[CrossRef]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic structure of the proposed TE0&TE1 multiplexer.

Fig. 2
Fig. 2

(a) Effective indices of the TE0, TE1 and TM0 modes of an air-clad SOI waveguide as a function of the waveguide width w for a waveguide height h = 250 nm. (b) Simulated TE0-TE1 coupling efficiency rTE0-TE1, mode crosstalk rTE0-TE0, and TE0-TM0 coupling efficiency rTE0-TM0 as a function of wavelength. w1 = 390 nm, w2a = 750 nm, w2b = 850 nm, L = 50 μm and g = 100 nm.

Fig. 3
Fig. 3

Simulated coupling efficiency rTE0-TE1 and mode crosstalk rTE0-TE0 as a function of (a) width deviation ∆w and (b) coupling gap g for different lengths L for both tapered and normal DCs. The operation wavelength is 1550 nm.

Fig. 4
Fig. 4

(a) Fabricated TE0&TE1 mode multiplexing circuit. (b) Scanning electron microscope (SEM) pictures of a fabricated TE0&TE1 mode (de)multiplexer and details of its beginning (c) and end (d) sides.

Fig. 5
Fig. 5

Measured transmissions from inputs CH1 and CH2 to the demultiplexed outputs CH1 and CH2 on the TE0 mode, and the corresponding crosstalk for different widths w1 of the narrow waveguide and taper lengths L.

Fig. 6
Fig. 6

Experimental setup for on-chip two-mode division multiplexing. The insets show the measured eye-diagrams of the NRZ signals after the transmitter and at one of the outputs of the demultiplexer, respectively.

Fig. 7
Fig. 7

(a) Measured spectra of the two demultiplexed NRZ-OOK signals at output ports CH1 and CH2, as well as the corresponding crosstalk for each demultiplexing channel. (b) Measured eye diagrams of the NRZ-OOK signal at the transmitter output. Measured eye-diagrams of the demultiplexed signal at the CH1 output port without (c) and with (e) crosstalk. Measured eye-diagrams of the demultiplexed signal at the CH2 output port without (d) and with (f) crosstalk.

Fig. 8
Fig. 8

BER measurements for the two demultiplexed channels with and without crosstalk.

Metrics