Abstract

Collection of free carriers is a key issue in silicon photonics devices. We show that a lateral metal-semiconductor-metal Schottky junction is an efficient and simple way of dealing with that issue in a photonic crystal microcavity. Using a simple electrode design, and taking into account the optical mode profile, the resulting carrier distribution in the structure is calculated. We show that the corresponding effective free carrier lifetime can be reduced by 50 times when the bias is tuned. This allows one to maintain a high cavity quality factor under strong optical injection. In the fabricated structures, carrier depletion is correlated with transmission spectra and directly visualized by Electron Beam Induced Current pictures. These measurements demonstrate the validity of this carrier extraction principle. The design can still be optimized in order to obtain full carrier depletion at a smaller energy cost.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol.24, 4600–4615 (2006).
    [CrossRef]
  2. M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
    [CrossRef]
  3. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18, 14671–14678 (2010).
    [CrossRef] [PubMed]
  4. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012).
    [CrossRef]
  5. G. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4, 518–526 (2010).
    [CrossRef]
  6. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
    [CrossRef]
  7. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30, 2575–2577 (2005).
    [CrossRef] [PubMed]
  8. M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
    [CrossRef] [PubMed]
  9. Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
    [CrossRef]
  10. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
    [CrossRef]
  11. X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308 (2010).
    [CrossRef]
  12. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. OFaolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18, 22915–22927 (2010).
    [CrossRef] [PubMed]
  13. T. J. Johnson and O. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” 2009 Conf. On Lasers and Electro-optics and Quantum Electronics and Laser Science Conf. (cleo/qels 2009), Vols 1–5 pp. 72–73 (2009).
  14. A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007).
    [CrossRef]
  15. P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
    [CrossRef]
  16. B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
    [CrossRef]
  17. J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
    [CrossRef]
  18. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17, 22505–22513 (2009).
    [CrossRef]
  19. L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express18, 23965–23972 (2010).
    [CrossRef] [PubMed]
  20. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
    [CrossRef]
  21. R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett.102, 031114 (2013).
    [CrossRef]
  22. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23, 123–129 (1987).
    [CrossRef]
  23. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15, 16604–16644 (2007).
    [CrossRef] [PubMed]
  24. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006).
    [CrossRef]
  25. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).
    [CrossRef]
  26. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975).
    [CrossRef]
  27. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Blackwell, 2006 (3rd edition)).
    [CrossRef]
  28. S. Sze, D. C., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14, 1209 – 1218 (1971).
    [CrossRef]
  29. T. E. Everhart, O. C. Welles, and C. W. Oatley, “Factors affecting contrast and resolution in the scanning electron microscope,” J. Electron. Control7, 97–111 (1959).
    [CrossRef]
  30. T. E. Everhart, O. C. Wells, and R. K. Matta, “A novel method of semiconductor device measurements,” Proc. IEEE52, 1642–1647 (1964).
    [CrossRef]
  31. K. O. Leedy, “A bibliography on electron beam induced current analysis of semiconductor devices,” Solid-State Tech.20, 45–48 (1977).
  32. W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996).
    [CrossRef]
  33. C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photon. Technol. Lett.15, 1585–1587 (2003).
    [CrossRef]

2013

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett.102, 031114 (2013).
[CrossRef]

2012

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012).
[CrossRef]

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

2011

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

2010

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308 (2010).
[CrossRef]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. OFaolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18, 22915–22927 (2010).
[CrossRef] [PubMed]

L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express18, 23965–23972 (2010).
[CrossRef] [PubMed]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
[CrossRef]

G. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4, 518–526 (2010).
[CrossRef]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
[CrossRef]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18, 14671–14678 (2010).
[CrossRef] [PubMed]

2009

2007

A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007).
[CrossRef]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15, 16604–16644 (2007).
[CrossRef] [PubMed]

2006

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol.24, 4600–4615 (2006).
[CrossRef]

2005

2004

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

2003

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photon. Technol. Lett.15, 1585–1587 (2003).
[CrossRef]

2002

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

1996

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996).
[CrossRef]

1987

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23, 123–129 (1987).
[CrossRef]

1977

K. O. Leedy, “A bibliography on electron beam induced current analysis of semiconductor devices,” Solid-State Tech.20, 45–48 (1977).

1975

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975).
[CrossRef]

1971

S. Sze, D. C., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14, 1209 – 1218 (1971).
[CrossRef]

1964

T. E. Everhart, O. C. Wells, and R. K. Matta, “A novel method of semiconductor device measurements,” Proc. IEEE52, 1642–1647 (1964).
[CrossRef]

1959

T. E. Everhart, O. C. Welles, and C. W. Oatley, “Factors affecting contrast and resolution in the scanning electron microscope,” J. Electron. Control7, 97–111 (1959).
[CrossRef]

Adesida, I.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996).
[CrossRef]

Agrawal, G. P.

Alberigi-Quaranta, A.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975).
[CrossRef]

Anand, S.

A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007).
[CrossRef]

Arafa, M.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996).
[CrossRef]

Baba, T.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett.102, 031114 (2013).
[CrossRef]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012).
[CrossRef]

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23, 123–129 (1987).
[CrossRef]

Bensahel, D.

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Berrier, A.

A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007).
[CrossRef]

Besten, J.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Binsma, H.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Boucaud, P.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
[CrossRef]

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308 (2010).
[CrossRef]

L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express18, 23965–23972 (2010).
[CrossRef] [PubMed]

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

C., D.

S. Sze, D. C., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14, 1209 – 1218 (1971).
[CrossRef]

Campidelli, Y.

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Canali, C.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975).
[CrossRef]

Cardile, P.

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

Checoury, X.

L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express18, 23965–23972 (2010).
[CrossRef] [PubMed]

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308 (2010).
[CrossRef]

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
[CrossRef]

Chui, C. O.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photon. Technol. Lett.15, 1585–1587 (2003).
[CrossRef]

Cohen, O.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Combrié, S.

Corcoran, B.

David, S.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
[CrossRef]

De Rossi, A.

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Dorren, H.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Doylend, J. K.

Ebnali-Heidari, M.

Eggleton, B. J.

El Kurdi, M.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
[CrossRef]

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Ellis, B.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

Everhart, T. E.

T. E. Everhart, O. C. Wells, and R. K. Matta, “A novel method of semiconductor device measurements,” Proc. IEEE52, 1642–1647 (1964).
[CrossRef]

T. E. Everhart, O. C. Welles, and C. W. Oatley, “Factors affecting contrast and resolution in the scanning electron microscope,” J. Electron. Control7, 97–111 (1959).
[CrossRef]

Faolain, L. O.

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol.24, 4600–4615 (2006).
[CrossRef]

Fay, P.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996).
[CrossRef]

Fishman, G.

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Franzo, G.

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

Galli, M.

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

Gardes, F. Y.

G. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4, 518–526 (2010).
[CrossRef]

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Grillet, C.

Haller, E.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

Han, Z.

L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express18, 23965–23972 (2010).
[CrossRef] [PubMed]

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308 (2010).
[CrossRef]

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
[CrossRef]

Haret, L.-D.

Harris, J.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

Hayakawa, R.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett.102, 031114 (2013).
[CrossRef]

Hill, M.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Ishikura, N.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett.102, 031114 (2013).
[CrossRef]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012).
[CrossRef]

Jacoboni, C.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975).
[CrossRef]

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol.24, 4600–4615 (2006).
[CrossRef]

Jessop, P. E.

Johnson, T. J.

T. J. Johnson and O. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” 2009 Conf. On Lasers and Electro-optics and Quantum Electronics and Laser Science Conf. (cleo/qels 2009), Vols 1–5 pp. 72–73 (2009).

Kermarrec, O.

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Khoe, G.-D.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Knights, A. P.

Krauss, T. F.

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. OFaolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18, 22915–22927 (2010).
[CrossRef] [PubMed]

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Kuo, Y.-H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Kuramochi, E.

Leedy, K. O.

K. O. Leedy, “A bibliography on electron beam induced current analysis of semiconductor devices,” Solid-State Tech.20, 45–48 (1977).

Leijtens, X.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Li, J.

Lin, Q.

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Loya, A.

S. Sze, D. C., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14, 1209 – 1218 (1971).
[CrossRef]

Mahajan, A.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996).
[CrossRef]

Malm, G.

A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007).
[CrossRef]

Mashanovich, G.

G. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4, 518–526 (2010).
[CrossRef]

Matta, R. K.

T. E. Everhart, O. C. Wells, and R. K. Matta, “A novel method of semiconductor device measurements,” Proc. IEEE52, 1642–1647 (1964).
[CrossRef]

Mayer, M.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30, 2575–2577 (2005).
[CrossRef] [PubMed]

Monat, C.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Mulot, M.

A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007).
[CrossRef]

Nava, F.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975).
[CrossRef]

Néel, D.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
[CrossRef]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Blackwell, 2006 (3rd edition)).
[CrossRef]

Nguyen, H. C.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett.102, 031114 (2013).
[CrossRef]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012).
[CrossRef]

Nishiguchi, K.

Notomi, M.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17, 22505–22513 (2009).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30, 2575–2577 (2005).
[CrossRef] [PubMed]

Oatley, C. W.

T. E. Everhart, O. C. Welles, and C. W. Oatley, “Factors affecting contrast and resolution in the scanning electron microscope,” J. Electron. Control7, 97–111 (1959).
[CrossRef]

Oei, Y.-S.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

OFaolain, L.

Okyay, A. K.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photon. Technol. Lett.15, 1585–1587 (2003).
[CrossRef]

Ostling, M.

A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007).
[CrossRef]

Ottaviani, G.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975).
[CrossRef]

Painter, O.

T. J. Johnson and O. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” 2009 Conf. On Lasers and Electro-optics and Quantum Electronics and Laser Science Conf. (cleo/qels 2009), Vols 1–5 pp. 72–73 (2009).

Painter, O. J.

Paniccia, M.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Patriarche, G.

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Petykiewicz, J.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

Priolo, F.

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

Raday, O.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Reed, G.

G. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4, 518–526 (2010).
[CrossRef]

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Rong, H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Sagnes, I.

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Saint-Girons, G.

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Sakai, Y.

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012).
[CrossRef]

Saraswat, K. C.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photon. Technol. Lett.15, 1585–1587 (2003).
[CrossRef]

Sarmiento, T.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

Sauvage, S.

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

Savio, R. L.

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

Selberherr, S.

S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).
[CrossRef]

Shambat, G.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

Shinkawa, M.

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012).
[CrossRef]

Shinya, A.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30, 2575–2577 (2005).
[CrossRef] [PubMed]

Sih, V.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Smallbrugge, B.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Smit, M.

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23, 123–129 (1987).
[CrossRef]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Sumikura, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
[CrossRef]

Sze, S.

S. Sze, D. C., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14, 1209 – 1218 (1971).
[CrossRef]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Blackwell, 2006 (3rd edition)).
[CrossRef]

Tanabe, T.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17, 22505–22513 (2009).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30, 2575–2577 (2005).
[CrossRef] [PubMed]

Taniyama, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
[CrossRef]

Thomson, D. J.

G. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4, 518–526 (2010).
[CrossRef]

Van Thourhout, D.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

Vuckovic, J.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006).
[CrossRef]

Welles, O. C.

T. E. Everhart, O. C. Welles, and C. W. Oatley, “Factors affecting contrast and resolution in the scanning electron microscope,” J. Electron. Control7, 97–111 (1959).
[CrossRef]

Wells, O. C.

T. E. Everhart, O. C. Wells, and R. K. Matta, “A novel method of semiconductor device measurements,” Proc. IEEE52, 1642–1647 (1964).
[CrossRef]

White, T. P.

Wohlmuth, W. A.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996).
[CrossRef]

Xu, S.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Zhang, B.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

Appl. Phys. Lett.

P. Cardile, G. Franzo, R. L. Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98, 203506 (2011).
[CrossRef]

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96, 181103 (2010).
[CrossRef]

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
[CrossRef]

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett.102, 031114 (2013).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006).
[CrossRef]

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69, 3578–3580 (1996).
[CrossRef]

IEEE J. Quantum Electron.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23, 123–129 (1987).
[CrossRef]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: Carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48, 210–220 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photon. Technol. Lett.15, 1585–1587 (2003).
[CrossRef]

J. Appl. Phys.

A. Berrier, M. Mulot, G. Malm, M. Ostling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys.101, 123101 (2007).
[CrossRef]

M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys.92, 1858–1861 (2002).
[CrossRef]

J. Electron. Control

T. E. Everhart, O. C. Welles, and C. W. Oatley, “Factors affecting contrast and resolution in the scanning electron microscope,” J. Electron. Control7, 97–111 (1959).
[CrossRef]

J. Lightw. Technol.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol.24, 4600–4615 (2006).
[CrossRef]

Nat. Photon.

G. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon.4, 518–526 (2010).
[CrossRef]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon.4, 182–187 (2010).
[CrossRef]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photon.1, 232–237 (2007).
[CrossRef]

Nature

M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smallbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based on coupled mico-ring lasers,” Nature432, 206–209 (2004).
[CrossRef] [PubMed]

Opt. Comm.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Comm.283, 4387–4391 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308 (2010).
[CrossRef]

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B12, 2265–2284 (1975).
[CrossRef]

Proc. IEEE

T. E. Everhart, O. C. Wells, and R. K. Matta, “A novel method of semiconductor device measurements,” Proc. IEEE52, 1642–1647 (1964).
[CrossRef]

Solid-State Electron.

S. Sze, D. C., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14, 1209 – 1218 (1971).
[CrossRef]

Solid-State Tech.

K. O. Leedy, “A bibliography on electron beam induced current analysis of semiconductor devices,” Solid-State Tech.20, 45–48 (1977).

Other

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Blackwell, 2006 (3rd edition)).
[CrossRef]

S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).
[CrossRef]

T. J. Johnson and O. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” 2009 Conf. On Lasers and Electro-optics and Quantum Electronics and Laser Science Conf. (cleo/qels 2009), Vols 1–5 pp. 72–73 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dependence of the effective quality factor on the input power for different effective carrier lifetimes in a width-modulated W1 waveguide photonic crystal cavity. The decrease of the quality factor is due to the cumulated effect of two-photon absorption, and free-carrier absorption (FCA). The latter effect is dominant as soon as the free carrier lifetime τfc is larger than 50 ps.

Fig. 2
Fig. 2

(a) Simulated structure. The MSM junction (gray electrodes) is embedded near the cavity center (b) Semilog plot of current versus voltage for several radii of photonic crystal holes. Inset: zoom at low bias regime (linear plot)

Fig. 3
Fig. 3

(Simulation) (a) Optical mode profile of the width-modulated W1 waveguide photonic crystal cavity (b) Photogenerated carrier distribution (V = 0 V), resulting from the convolution of the optical mode profile by diffusion effects (c) Photocurrent vs. applied bias. The available current constant is the quantity one would obtain if all the generated carriers were collected. At 15 V, 99% of the carriers are collected.

Fig. 4
Fig. 4

(Simulation) Effective carrier lifetime depending on applied bias. The calculation is derived from the simulated carrier distribution. The lifetime is reduced 50 times at a 30V bias.

Fig. 5
Fig. 5

(a) Dark current and photocurrent (surface illumination at visible wavelength in a Pt-Si-Pt photonic crystal junction. (b) Transmission spectra at 0 and 20 V, for Pin = 50 μW. The higher peak resonance at 20 V is attributed to a slight increase in the quality factor due to the removal of the free carriers and the reduction of free carrier lifetime. The red shift is due to Joule effect.

Fig. 6
Fig. 6

Comparison of EBIC images at the cathode with simulated electron density (a)–(c) Normalised EBIC images of Pt-Si-Pt MSM junction on photonic crystal for different bias voltages under the following SEM conditions: High Voltage = 15 kV, probe current = 10 pA. In image (a), because of the low bias condition, the contribution of noise is much higher than in images (b) and (c). Therefore the contrast between depleted and intrinsic regions is smaller. (d)–(f) Simulated electron density, for the same three bias voltages. The colorbar unit is cm−3 (log scale) (a),(d): 1 V. (b),(e): 15 V. (c),(f): 25 V.

Fig. 7
Fig. 7

Comparison of calculated depletion width (solid line) from Eq. (6) (ND = 6 × 1015 cm−3) and width extracted from EBIC images.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A d t = [ ω 0 2 Q + β TPA 2 V TPA ( c n Si ) 2 | A | 2 + 1 2 ( c n Si ) σ FCA n ph eff ] A + ( ω 0 Tr 0 2 Q P in ) 1 / 2
Q eff 1 = Q 1 + ( ω 0 V TPA n Si 2 β TPA c 2 | A | 2 ) 1 + ( ω 0 n Si c σ FCA n ph eff ) 1
n ph eff : = Si n ph ( r ) n Si 2 | E | 2 ( r ) d 3 r 𝒱 n 0 2 ( r ) | E | 2 ( r ) d 3 r
ϕ S = V appl E B n q + ( E C E F )
J n , p = A n , p * * T 2 q N C ( n e , h n e , h eq )
W = 2 ε 0 ε Si q 2 N D ( E B n k B T ( ln N C N D + 1 ) q V appl )

Metrics