Abstract

By shifting the rotational axis of the recording film and recording the individual image-plane holograms in reversed sequence with the real-image holographic system [Opt. Express 18, 14012 (2010)], the disk-type multiplex hologram can be made to generate virtual image for walk-around viewing if the recording reference source point is maintained on the symmetry axis of hologram disk. Theoretical formulation and numerical simulation show the characteristics of the reconstructed image. Experimental results are also shown for qualitative comparison.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Saxby, Practical Holography, 2nd ed. (Prentice-Hall, 1994).
  2. D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt.8(8), 1740–1741 (1969).
    [CrossRef] [PubMed]
  3. M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt.9(2), 471–475 (1970).
    [CrossRef] [PubMed]
  4. L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt. Eng.19(5), 691–695 (1980).
    [CrossRef]
  5. E. N. Leith and P. Voulgaris, “Multiplex holography: some new methods,” Opt. Eng.24(1), 171–175 (1985).
    [CrossRef]
  6. K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi, and T. Ose, “Conical holographic stereograms,” Opt. Commun.73(5), 347–350 (1989).
    [CrossRef]
  7. L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng.34(3), 814–817 (1995).
    [CrossRef]
  8. Y. S. Cheng, W. H. Su, and R. C. Chang, “Disk-type multiplex holography,” Appl. Opt.38(14), 3093–3100 (1999).
    [CrossRef] [PubMed]
  9. Y. S. Cheng and C. H. Chen, “Image-plane disk-type multiplex hologram,” Appl. Opt.42(35), 7013–7022 (2003).
    [CrossRef] [PubMed]
  10. Y. S. Cheng and C. M. Lai, “Image-plane conical multiplex holography by one-step recording,” Opt. Eng.42(6), 1631–1639 (2003).
    [CrossRef]
  11. Y. S. Cheng and R. C. Chang, “Image-plane cylindrical holographic stereogram,” Appl. Opt.39(23), 4058–4069 (2000).
    [CrossRef] [PubMed]
  12. Y. S. Cheng, Y. T. Su, and C. H. Chen, “360-degree viewable image-plane disk-type multiplex holography by one-step recording,” Opt. Express18(13), 14012–14023 (2010).
    [CrossRef] [PubMed]
  13. Y. S. Cheng, C. H. Chen, and Y. C. Hsieh, “Reflection disk-type multiplex holography using two-step recording,” Jpn. J. Appl. Phys.47(9), 7173–7181 (2008).
    [CrossRef]
  14. http://www.slavich.com/pfg03c.htm

2010 (1)

2008 (1)

Y. S. Cheng, C. H. Chen, and Y. C. Hsieh, “Reflection disk-type multiplex holography using two-step recording,” Jpn. J. Appl. Phys.47(9), 7173–7181 (2008).
[CrossRef]

2003 (2)

Y. S. Cheng and C. M. Lai, “Image-plane conical multiplex holography by one-step recording,” Opt. Eng.42(6), 1631–1639 (2003).
[CrossRef]

Y. S. Cheng and C. H. Chen, “Image-plane disk-type multiplex hologram,” Appl. Opt.42(35), 7013–7022 (2003).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1995 (1)

L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng.34(3), 814–817 (1995).
[CrossRef]

1989 (1)

K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi, and T. Ose, “Conical holographic stereograms,” Opt. Commun.73(5), 347–350 (1989).
[CrossRef]

1985 (1)

E. N. Leith and P. Voulgaris, “Multiplex holography: some new methods,” Opt. Eng.24(1), 171–175 (1985).
[CrossRef]

1980 (1)

L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt. Eng.19(5), 691–695 (1980).
[CrossRef]

1970 (1)

1969 (1)

Berry, D. H.

Chang, R. C.

Chen, C. H.

Cheng, Y. S.

DeBitetto, D. J.

Fusek, R. L.

L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt. Eng.19(5), 691–695 (1980).
[CrossRef]

Honda, T.

L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng.34(3), 814–817 (1995).
[CrossRef]

Hsieh, Y. C.

Y. S. Cheng, C. H. Chen, and Y. C. Hsieh, “Reflection disk-type multiplex holography using two-step recording,” Jpn. J. Appl. Phys.47(9), 7173–7181 (2008).
[CrossRef]

Huff, L.

L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt. Eng.19(5), 691–695 (1980).
[CrossRef]

King, M. C.

Lai, C. M.

Y. S. Cheng and C. M. Lai, “Image-plane conical multiplex holography by one-step recording,” Opt. Eng.42(6), 1631–1639 (2003).
[CrossRef]

Leith, E. N.

E. N. Leith and P. Voulgaris, “Multiplex holography: some new methods,” Opt. Eng.24(1), 171–175 (1985).
[CrossRef]

Murillo-Mora, L. M.

L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng.34(3), 814–817 (1995).
[CrossRef]

Noll, A. M.

Okada, K.

L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng.34(3), 814–817 (1995).
[CrossRef]

K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi, and T. Ose, “Conical holographic stereograms,” Opt. Commun.73(5), 347–350 (1989).
[CrossRef]

Ose, T.

K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi, and T. Ose, “Conical holographic stereograms,” Opt. Commun.73(5), 347–350 (1989).
[CrossRef]

Su, W. H.

Su, Y. T.

Tsujiuchi, J.

L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng.34(3), 814–817 (1995).
[CrossRef]

K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi, and T. Ose, “Conical holographic stereograms,” Opt. Commun.73(5), 347–350 (1989).
[CrossRef]

Voulgaris, P.

E. N. Leith and P. Voulgaris, “Multiplex holography: some new methods,” Opt. Eng.24(1), 171–175 (1985).
[CrossRef]

Yamaji, Y.

K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi, and T. Ose, “Conical holographic stereograms,” Opt. Commun.73(5), 347–350 (1989).
[CrossRef]

Yoshii, S.

K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi, and T. Ose, “Conical holographic stereograms,” Opt. Commun.73(5), 347–350 (1989).
[CrossRef]

Appl. Opt. (5)

Jpn. J. Appl. Phys. (1)

Y. S. Cheng, C. H. Chen, and Y. C. Hsieh, “Reflection disk-type multiplex holography using two-step recording,” Jpn. J. Appl. Phys.47(9), 7173–7181 (2008).
[CrossRef]

Opt. Commun. (1)

K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi, and T. Ose, “Conical holographic stereograms,” Opt. Commun.73(5), 347–350 (1989).
[CrossRef]

Opt. Eng. (4)

L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng.34(3), 814–817 (1995).
[CrossRef]

L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt. Eng.19(5), 691–695 (1980).
[CrossRef]

E. N. Leith and P. Voulgaris, “Multiplex holography: some new methods,” Opt. Eng.24(1), 171–175 (1985).
[CrossRef]

Y. S. Cheng and C. M. Lai, “Image-plane conical multiplex holography by one-step recording,” Opt. Eng.42(6), 1631–1639 (2003).
[CrossRef]

Opt. Express (1)

Other (2)

G. Saxby, Practical Holography, 2nd ed. (Prentice-Hall, 1994).

http://www.slavich.com/pfg03c.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical system for recording of image-plane disk-type multiplex hologram.

Fig. 2
Fig. 2

Viewing geometry for virtual image generated from disk-type hologram.

Fig. 3
Fig. 3

The relationship between the laboratory coordinate system Xo-Yo-Zo and the object coordinate system X-Y-Z.

Fig. 4
Fig. 4

Object point in the CCD coordinate system Xc-Yc-Zc and its image on the detector plane Xd-Yd.

Fig. 5
Fig. 5

Optical system shows the object point on the LCD is imaged onto the holographic film and the object wave is further focused at point Pe. A coherent reference wave is introduced from the point Pc on the axis of rotation of the recording film.

Fig. 6
Fig. 6

Object point Pf in the film coordinate system Xf-Yf appears to be at Pv(Xv, Yv) in the observation coordinate system Xv-Yv after coordinate transformation with displacement A and rotation angle θv.

Fig. 7
Fig. 7

Observed wavelength bandwidth and number of individual hologram for the corners of the cube image at the designated viewing distance but at different observation angles: (a) 42.5° (b) 45° (c) 47.5° (d) 50° (e) 52.5° (f) 55°.

Fig. 8
Fig. 8

(a) Location and spot size of horizontal focal spot as a function of wavelength; (b) Location and spot size of vertical focal spot as a function of wavelength.

Fig. 9
Fig. 9

Observed wavelength bandwidth and number of individual hologram for the corners of the cube image at different distances along the designated viewing direction: (a) 40 cm (b) 60 cm (c) 90 cm (d) 130 cm (e) 180 cm.

Fig. 10
Fig. 10

(a) Width-to-height ratio of the reconstructed image as a function of the viewing distance along the designated viewing direction. (b) Width-to-height ratio of the reconstructed image as a function of the observation angle at the designated viewing distance.

Fig. 11
Fig. 11

Shortest distance Drl between lines of sight as a function of the dimension of the object.

Fig. 12
Fig. 12

Typical images observed by both eyes of the observer at the designated viewing distance but with different azimuthal angles.

Fig. 13
Fig. 13

Images observed at different viewing distances along the designated viewing angle of 45°.

Fig. 14
Fig. 14

Images observed at the designated viewing distance (60cm) but at different viewing angles with respect to the horizontal plane.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ x c y c z c ]=[ 100 0cosσsinσ 0sinσcosσ ][ x o y o z o ].
( cos α o ,cos β o ,cos γ o )= ( x f , d fe sin θ 1 y f , d fe cos θ 1 ) x f 2 + ( d fe sin θ 1 + y f ) 2 + ( d fe cos θ 1 ) 2 .
( cos α c ,cos β c ,cos γ c )= ( x f , y f A, D c ) x f 2 + ( y f A ) 2 + D c 2 .
x v = x f 2 +( A y f 2 ) sin( θ v + tan 1 ( x f A y f ) ),
y v = x f 2 +( A y f 2 ) cos( θ v + tan 1 ( x f A y f ) ).
[ cos α v cos β v cos γ v ]=[ cos θ v sin θ v 0 sin θ v cos θ v 0 001 ][ cosα cosβ cosγ ].
( cos α r ,cos β r ,cos γ r )= ( x v , y v , D c ) x v 2 + y v 2 + D c 2 .
cos α i =cos α r + λ r λ c cos α o λ r λ c cos α c ,
cos β i =cos β r + λ r λ c cos β o λ r λ c cos β c .

Metrics