Abstract

A narrow filtering technique based on the spectral overlapping of two uniform FBGs and applied to obtain a Single Longitudinal Mode (SLM) laser is proposed and demonstrated in this work. The two FBGs are spectrally detuned to reduce their coincident reflection response narrowing the equivalent filter bandwidth. A proof-of-concept linear laser has been built and tested exhibiting SLM operation even with temperature and strain variations.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Short monolithic dual-wavelength single-longitudinal-mode DBR phosphate fiber laser

Lingyun Xiong, Peter Hofmann, Axel Schülzgen, N. Peyghambarian, and Jacques Albert
Appl. Opt. 53(18) 3848-3853 (2014)

Simultaneous measurement of strain and temperature based on hybrid EDF/Brillouin laser

Heng Xie, Junqiang Sun, and Danqi Feng
Opt. Express 24(11) 11475-11482 (2016)

Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method

Ting Feng, Dongliang Ding, Fengping Yan, Ziwei Zhao, Hongxin Su, and X. Steve Yao
Opt. Express 24(17) 19760-19768 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
    [Crossref]
  2. M. López-Higuera, ed., Handbook of optical fibre sensing technology (Wiley& Sons, 2002)
  3. M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
    [Crossref]
  4. S. Pan and J. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
    [Crossref] [PubMed]
  5. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser,” Opt. Express 16(18), 14173–14179 (2008).
    [Crossref] [PubMed]
  6. J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28(15), 1385–1387 (1992).
    [Crossref]
  7. G. A. Ball and W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett. 17(6), 420–422 (1992).
    [Crossref] [PubMed]
  8. S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18(16), 1741–1743 (2006).
    [Crossref]
  9. R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
    [Crossref]
  10. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
    [Crossref]
  11. Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, “Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range,” Opt. Express 15(2), 363–370 (2007).
    [Crossref] [PubMed]
  12. M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
    [Crossref]
  13. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
    [Crossref] [PubMed]
  14. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [Crossref]

2010 (2)

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (1)

2006 (1)

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18(16), 1741–1743 (2006).
[Crossref]

2004 (1)

2003 (1)

A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[Crossref]

1995 (1)

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

1992 (2)

G. A. Ball and W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett. 17(6), 420–422 (1992).
[Crossref] [PubMed]

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Ball, G. A.

Bellemare, A.

A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[Crossref]

Canales, I.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Chen, S.

R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
[Crossref]

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, “Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range,” Opt. Express 15(2), 363–370 (2007).
[Crossref] [PubMed]

DiGiovanni, D. J.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

Eggleton, B. J.

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

Fang, X.

Fernandez-Vallejo, M.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Geng, J.

Grant, K. J.

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18(16), 1741–1743 (2006).
[Crossref]

Grattan, K. T. V.

R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
[Crossref]

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, “Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range,” Opt. Express 15(2), 363–370 (2007).
[Crossref] [PubMed]

He, X.

Hu, Y.

Ibsen, M.

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

Jiang, S.

Kaneda, Y.

Kang, J. U.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Liao, C.

Lopez-Amo, M.

R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
[Crossref]

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Lopez-Higuer, J. M.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Mizrahi, V.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

Morey, W. W.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Ouellette, F.

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

Pan, S.

Perez-Herrera, R. A.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
[Crossref]

Peyghambarian, N.

Pradhan, S.

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18(16), 1741–1743 (2006).
[Crossref]

Qiu, Y.

Quintela, M. A.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Sceats, M. G.

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

Shen, Y.

Spiegelberg, C.

Sulhoff, J. W.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

Sun, J.

Sun, T.

R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
[Crossref]

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, “Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range,” Opt. Express 15(2), 363–370 (2007).
[Crossref] [PubMed]

Town, G. E.

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18(16), 1741–1743 (2006).
[Crossref]

Wang, D. N.

Wu, B.

Yao, J.

Zhang, K.

Zhao, W.

R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
[Crossref]

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, “Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range,” Opt. Express 15(2), 363–370 (2007).
[Crossref] [PubMed]

Zyskind, J. L.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

Electron. Lett. (3)

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28(15), 1385–1387 (1992).
[Crossref]

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuer, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18(16), 1741–1743 (2006).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

R. A. Perez-Herrera, S. Chen, W. Zhao, T. Sun, K. T. V. Grattan, and M. Lopez-Amo, “Stability performance of short cavity Er-doped fiber lasers,” Opt. Commun. 283(6), 1067–1070 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Prog. Quantum Electron. (1)

A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[Crossref]

Other (1)

M. López-Higuera, ed., Handbook of optical fibre sensing technology (Wiley& Sons, 2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

One FBG is detuned (dashed line) in terms of the other (dotted line). The overlapped spectrum (solid line) gives rise to a filter narrower than both individual FBGs.

Fig. 2
Fig. 2

Employed setup during the fabrication process. The DBR fiber laser structure is also shown: two uniform FBGs of 9 mm length were inscribed into Er-doped fiber with a distance between them of 40 mm.

Fig. 3
Fig. 3

SLM operation measured at 25°C. The laser signal is mixed with a TLS source obtaining a single peak.

Fig. 4
Fig. 4

Linewidth of 4.5 kHz (3dB) measured using self-heterodyne detection with a modulation frequency of 1GHz (left). Wavelength stability (62.2MHz) of both orthogonal polarization modes measured during 10 minutes.

Fig. 5
Fig. 5

Measured OSNR for a 26dBm power pump (left) and power stability measured during 1 hour (right).

Fig. 6
Fig. 6

Emitted wavelength displacement during the temperature sweep (left) and the two orthogonal polarization modes at the extreme temperatures (0°C and 100°C) (right).

Fig. 7
Fig. 7

Emitted wavelength displacement during the strain sweep (left). The two orthogonal polarization modes are depicted in both extremes (right).

Metrics