Abstract

Highly sensitive cantilever-enhanced photoacoustic detection of hydrogen cyanide and methane in the mid-infrared region is demonstrated. A mid-infrared continuous-wave frequency tunable optical parametric oscillator was used as a light source in the experimental setup. Noise equivalent detection limits of 190 ppt (1 s) and 65 ppt (30 s) were achieved for HCN and CH4, respectively. The normalized noise equivalent absorption coefficient is 1.8 × 10−9 W cm−1 Hz−1/2.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
    [CrossRef]
  2. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
    [CrossRef]
  3. A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett.307(5-6), 343–349 (1999).
    [CrossRef]
  4. M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
    [CrossRef]
  5. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
    [CrossRef] [PubMed]
  6. F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Ensyclopedia of Analytical Chemistry, ed. by R. A. Meyers (John Wiley, 2000), 2203–2226.
  7. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt.43(11), 2257–2266 (2004).
    [CrossRef] [PubMed]
  8. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
    [CrossRef]
  9. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
    [CrossRef]
  10. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
    [CrossRef]
  11. J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
    [CrossRef]
  12. A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B85(2-3), 173–180 (2006).
    [CrossRef]
  13. F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
    [CrossRef]
  14. M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B70(6), 895–901 (2000).
    [CrossRef]
  15. A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum.72(4), 1937–1955 (2001).
    [CrossRef]
  16. M. E. Webber, M. Pushkarsky, and C. K. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt.42(12), 2119–2126 (2003).
    [CrossRef] [PubMed]
  17. A. Schmohl, A. Miklós, and P. Hess, “Detection of ammonia by photoacoustic spectroscopy with Semiconductor Lasers,” Appl. Opt.41(9), 1815–1823 (2002).
    [CrossRef] [PubMed]
  18. D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992).
    [CrossRef]
  19. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett.27(21), 1902–1904 (2002).
    [CrossRef] [PubMed]
  20. K. Wilcken and J. Kauppinen, “Optimization of a microphone for photoacoustic spectroscopy,” Appl. Spectrosc.57(9), 1087–1092 (2003).
    [CrossRef] [PubMed]
  21. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett.37(21), 4461–4463 (2012).
    [CrossRef] [PubMed]
  22. J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J.76(1-2), 151–159 (2004).
    [CrossRef]
  23. J. Uotila, V. Koskinen, and J. Kauppinen, “Selective differential photoacoustic method for trace gas analysis,” Vib. Spectrosc.38(1-2), 3–9 (2005).
    [CrossRef]
  24. T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, “Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection,” Opt. Express13(7), 2453–2458 (2005).
    [CrossRef] [PubMed]
  25. V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B86(3), 451–454 (2007).
    [CrossRef]
  26. A. Parkes, K. Keen, and E. McNaghten, “Trace gas detection using a novel cantilever-based photoacoustic spectrometer with multiplexed optical fiber-coupled diode lasers and fiber-amplification,” Proc. SPIE6770, 67701C, 67701C-7 (2007).
    [CrossRef]
  27. T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009).
    [CrossRef]
  28. J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
    [CrossRef]
  29. M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express16(15), 11141–11146 (2008).
    [CrossRef] [PubMed]
  30. M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
    [CrossRef]
  31. H. I. T. R. A. N. The, 2008 database, URL: http://www.hitran.com/ .
  32. G. Herzberg, Molecular spectra and molecular structure, Vol. 2: Infrared and Raman Spectra of Polyatomic Molecules (van Nostrand Reinhold Company, 1945).
  33. F. M. Schmidt, M. Metsälä, O. Vaittinen, and L. Halonen, “Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin,” J Breath Res5(4), 046004 (2011).
    [CrossRef] [PubMed]
  34. P. Bergamaschi, M. Schupp, and G. W. Harris, “High-precision direct measurements of 13CH4/12CH4 and 12CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer,” Appl. Opt.33(33), 7704–7716 (1994).
    [CrossRef] [PubMed]
  35. D. Wuebbles and K. Hayhoe, “Atmospheric methane and global change,” Earth Sci. Rev.57(3-4), 177–210 (2002).
    [CrossRef]
  36. A. Kosterev, T. Mosely, and F. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B85(2-3), 295–300 (2006).
    [CrossRef]
  37. P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
    [CrossRef]
  38. D. Arslanov, “Optical parametric oscillator based real-time trace gas analysis for bio-medical applications,” Ph.D. Thesis, Chapter 7, Radbound University, Nijmegen (2012).
  39. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
    [CrossRef]

2012 (4)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
[CrossRef]

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett.37(21), 4461–4463 (2012).
[CrossRef] [PubMed]

2011 (2)

F. M. Schmidt, M. Metsälä, O. Vaittinen, and L. Halonen, “Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin,” J Breath Res5(4), 046004 (2011).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

2010 (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

2009 (2)

T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

2008 (2)

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express16(15), 11141–11146 (2008).
[CrossRef] [PubMed]

2007 (3)

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B86(3), 451–454 (2007).
[CrossRef]

A. Parkes, K. Keen, and E. McNaghten, “Trace gas detection using a novel cantilever-based photoacoustic spectrometer with multiplexed optical fiber-coupled diode lasers and fiber-amplification,” Proc. SPIE6770, 67701C, 67701C-7 (2007).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

2006 (2)

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B85(2-3), 173–180 (2006).
[CrossRef]

A. Kosterev, T. Mosely, and F. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B85(2-3), 295–300 (2006).
[CrossRef]

2005 (2)

2004 (2)

2003 (2)

2002 (3)

2001 (2)

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum.72(4), 1937–1955 (2001).
[CrossRef]

2000 (1)

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B70(6), 895–901 (2000).
[CrossRef]

1999 (1)

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett.307(5-6), 343–349 (1999).
[CrossRef]

1998 (1)

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

1997 (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

1994 (1)

1993 (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

1992 (1)

D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Axner, O.

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

Bakhirkin, Y. A.

Bartalini, S.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

Bartlome, R.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
[CrossRef]

Belkin, M. A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Bergamaschi, P.

Bernacki, B. E.

Borri, S.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett.37(21), 4461–4463 (2012).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

Bour, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Bozoki, Z.

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum.72(4), 1937–1955 (2001).
[CrossRef]

Cancio, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Cattaneo, H.

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Corzine, S.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Curl, R. F.

De Natale, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

De Rosa, M.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

De Tommasi, E.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

Diehl, L.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Faist, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Fonsen, J.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B86(3), 451–454 (2007).
[CrossRef]

Galli, I.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

Giusfredi, G.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Gustafsson, J.

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

Halonen, L.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
[CrossRef]

F. M. Schmidt, M. Metsälä, O. Vaittinen, and L. Halonen, “Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin,” J Breath Res5(4), 046004 (2011).
[CrossRef] [PubMed]

M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express16(15), 11141–11146 (2008).
[CrossRef] [PubMed]

D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992).
[CrossRef]

Harren, F.

M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

Harren, F. J.

Harren, F. J. M.

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B85(2-3), 173–180 (2006).
[CrossRef]

Harris, G. W.

Hayhoe, K.

D. Wuebbles and K. Hayhoe, “Atmospheric methane and global change,” Earth Sci. Rev.57(3-4), 177–210 (2002).
[CrossRef]

Hecker, A.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

Hernberg, R.

Hess, P.

A. Schmohl, A. Miklós, and P. Hess, “Detection of ammonia by photoacoustic spectroscopy with Semiconductor Lasers,” Appl. Opt.41(9), 1815–1823 (2002).
[CrossRef] [PubMed]

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum.72(4), 1937–1955 (2001).
[CrossRef]

Hofler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

Kauppi, E.

D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992).
[CrossRef]

Kauppinen, I.

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J.76(1-2), 151–159 (2004).
[CrossRef]

Kauppinen, J.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B86(3), 451–454 (2007).
[CrossRef]

T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, “Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection,” Opt. Express13(7), 2453–2458 (2005).
[CrossRef] [PubMed]

J. Uotila, V. Koskinen, and J. Kauppinen, “Selective differential photoacoustic method for trace gas analysis,” Vib. Spectrosc.38(1-2), 3–9 (2005).
[CrossRef]

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J.76(1-2), 151–159 (2004).
[CrossRef]

K. Wilcken and J. Kauppinen, “Optimization of a microphone for photoacoustic spectroscopy,” Appl. Spectrosc.57(9), 1087–1092 (2003).
[CrossRef] [PubMed]

Keen, K.

A. Parkes, K. Keen, and E. McNaghten, “Trace gas detection using a novel cantilever-based photoacoustic spectrometer with multiplexed optical fiber-coupled diode lasers and fiber-amplification,” Proc. SPIE6770, 67701C, 67701C-7 (2007).
[CrossRef]

Kluczynski, P.

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

Koskinen, V.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B86(3), 451–454 (2007).
[CrossRef]

T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, “Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection,” Opt. Express13(7), 2453–2458 (2005).
[CrossRef] [PubMed]

J. Uotila, V. Koskinen, and J. Kauppinen, “Selective differential photoacoustic method for trace gas analysis,” Vib. Spectrosc.38(1-2), 3–9 (2005).
[CrossRef]

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J.76(1-2), 151–159 (2004).
[CrossRef]

Kosterev, A.

A. Kosterev, T. Mosely, and F. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B85(2-3), 295–300 (2006).
[CrossRef]

Kosterev, A. A.

Kriesel, J.

Kühnemann, F.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

Kuusela, T.

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009).
[CrossRef]

Laurila, T.

Lee, B. G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Lehtinen, J.

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Lindberg, Å. M.

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Maddaloni, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

Maisons, G.

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

Marinov, D.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
[CrossRef]

Martis, A. A. E.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

Matveev, B. A.

T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009).
[CrossRef]

Mazzotti, D.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

McNaghten, E.

A. Parkes, K. Keen, and E. McNaghten, “Trace gas detection using a novel cantilever-based photoacoustic spectrometer with multiplexed optical fiber-coupled diode lasers and fiber-amplification,” Proc. SPIE6770, 67701C, 67701C-7 (2007).
[CrossRef]

Metsälä, M.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
[CrossRef]

F. M. Schmidt, M. Metsälä, O. Vaittinen, and L. Halonen, “Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin,” J Breath Res5(4), 046004 (2011).
[CrossRef] [PubMed]

Miklos, A.

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum.72(4), 1937–1955 (2001).
[CrossRef]

Miklós, A.

Mlynek, J.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

Mosca, S.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

Mosely, T.

A. Kosterev, T. Mosely, and F. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B85(2-3), 295–300 (2006).
[CrossRef]

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

Nägele, M.

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B70(6), 895–901 (2000).
[CrossRef]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Newnham, D.

D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992).
[CrossRef]

Ngai, A. K. Y.

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B85(2-3), 173–180 (2006).
[CrossRef]

O’Keefe, A.

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett.307(5-6), 343–349 (1999).
[CrossRef]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Parkes, A.

A. Parkes, K. Keen, and E. McNaghten, “Trace gas detection using a novel cantilever-based photoacoustic spectrometer with multiplexed optical fiber-coupled diode lasers and fiber-amplification,” Proc. SPIE6770, 67701C, 67701C-7 (2007).
[CrossRef]

Patel, C. K.

Patimisco, P.

Paul, J. B.

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett.307(5-6), 343–349 (1999).
[CrossRef]

Peltola, J.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express16(15), 11141–11146 (2008).
[CrossRef] [PubMed]

Persijn, S.

M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express16(15), 11141–11146 (2008).
[CrossRef] [PubMed]

Persijn, S. T.

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B85(2-3), 173–180 (2006).
[CrossRef]

Peura, J.

T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009).
[CrossRef]

Pflugl, C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Pushkarsky, M.

Remennyy, M. A.

T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009).
[CrossRef]

Rey, J. M.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
[CrossRef]

Ricciardi, I.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

Rocco, A.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

Roller, C.

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

Roth, K.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B86(3), 451–454 (2007).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

Scamarcio, G.

Scherer, J. J.

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett.307(5-6), 343–349 (1999).
[CrossRef]

Schiller, S.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

Schmidt, F. M.

F. M. Schmidt, M. Metsälä, O. Vaittinen, and L. Halonen, “Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin,” J Breath Res5(4), 046004 (2011).
[CrossRef] [PubMed]

Schmohl, A.

Schneider, K.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

Schupp, M.

Sigrist, M. W.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
[CrossRef]

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B70(6), 895–901 (2000).
[CrossRef]

Siltanen, M.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
[CrossRef]

Sinisalo, S.

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

Spagnolo, V.

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

Stus’, N. M.

T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009).
[CrossRef]

Terzi, F.

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

Tittel, F.

A. Kosterev, T. Mosely, and F. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B85(2-3), 295–300 (2006).
[CrossRef]

Tittel, F. K.

Tittonen, I.

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

Ulvila, V.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
[CrossRef]

Uotila, J.

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

J. Uotila, V. Koskinen, and J. Kauppinen, “Selective differential photoacoustic method for trace gas analysis,” Vib. Spectrosc.38(1-2), 3–9 (2005).
[CrossRef]

Urban, W.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

Vainio, M.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express16(15), 11141–11146 (2008).
[CrossRef] [PubMed]

Vaittinen, O.

F. M. Schmidt, M. Metsälä, O. Vaittinen, and L. Halonen, “Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin,” J Breath Res5(4), 046004 (2011).
[CrossRef] [PubMed]

D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992).
[CrossRef]

Vogler, D. E.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
[CrossRef]

von Basum, G.

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B85(2-3), 173–180 (2006).
[CrossRef]

Wächter, H.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
[CrossRef]

Webber, M. E.

Werle, P.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

Wilcken, K.

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J.76(1-2), 151–159 (2004).
[CrossRef]

K. Wilcken and J. Kauppinen, “Optimization of a microphone for photoacoustic spectroscopy,” Appl. Spectrosc.57(9), 1087–1092 (2003).
[CrossRef] [PubMed]

Wuebbles, D.

D. Wuebbles and K. Hayhoe, “Atmospheric methane and global change,” Earth Sci. Rev.57(3-4), 177–210 (2002).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Zhan, X.

D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992).
[CrossRef]

Zondy, J.-J.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (9)

A. Kosterev, T. Mosely, and F. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B85(2-3), 295–300 (2006).
[CrossRef]

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B85(2-3), 173–180 (2006).
[CrossRef]

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998).
[CrossRef]

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B70(6), 895–901 (2000).
[CrossRef]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008).
[CrossRef]

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B86(3), 451–454 (2007).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (4)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett.307(5-6), 343–349 (1999).
[CrossRef]

D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992).
[CrossRef]

Earth Sci. Rev. (1)

D. Wuebbles and K. Hayhoe, “Atmospheric methane and global change,” Earth Sci. Rev.57(3-4), 177–210 (2002).
[CrossRef]

J Breath Res (1)

F. M. Schmidt, M. Metsälä, O. Vaittinen, and L. Halonen, “Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin,” J Breath Res5(4), 046004 (2011).
[CrossRef] [PubMed]

Microchem. J. (1)

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J.76(1-2), 151–159 (2004).
[CrossRef]

Mol. Phys. (1)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Proc. SPIE (2)

A. Parkes, K. Keen, and E. McNaghten, “Trace gas detection using a novel cantilever-based photoacoustic spectrometer with multiplexed optical fiber-coupled diode lasers and fiber-amplification,” Proc. SPIE6770, 67701C, 67701C-7 (2007).
[CrossRef]

J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum.72(4), 1937–1955 (2001).
[CrossRef]

Spectrochim. Acta B (1)

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

Vib. Spectrosc. (2)

J. Uotila, V. Koskinen, and J. Kauppinen, “Selective differential photoacoustic method for trace gas analysis,” Vib. Spectrosc.38(1-2), 3–9 (2005).
[CrossRef]

T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009).
[CrossRef]

Other (4)

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Ensyclopedia of Analytical Chemistry, ed. by R. A. Meyers (John Wiley, 2000), 2203–2226.

H. I. T. R. A. N. The, 2008 database, URL: http://www.hitran.com/ .

G. Herzberg, Molecular spectra and molecular structure, Vol. 2: Infrared and Raman Spectra of Polyatomic Molecules (van Nostrand Reinhold Company, 1945).

D. Arslanov, “Optical parametric oscillator based real-time trace gas analysis for bio-medical applications,” Ph.D. Thesis, Chapter 7, Radbound University, Nijmegen (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic picture of the experimental setup. The pump laser beam is coupled into the OPO cavity through a Faraday isolator (FI) and a focusing lens L1. The abbreviation HWP denotes a half-wave plate and PBS is a polarizing beam splitter (PBS). The OPO bow-tie cavity consists of four highly reflective (M1-M4) mirrors. To increase the frequency stability of the OPO, a 0.4 mm thick etalon is placed in the secondary focus of the bow-tie ring cavity. Output beams are collimated using an uncoated CaF2 lens L2. The mid-infrared idler beam is separated from the residual pump and the signal beams using a dichroic mirror (DM). The abbreviation GM indicates a gold mirror, and WBS is a wedge beam splitter. The idler beam is coupled into a photoacoustic analyser (PA201) through a focusing lens L3. The intensity fluctuations of the OPO are monitored after the analyser by a power meter (PM).

Fig. 2
Fig. 2

(a) A measured photoacoustic signal as a function of the OPO power at a constant 10 ppm HCN concentration. (b) A photoacoustic signal as a function of HCN concentration. Solid red lines are linear least-square fits to the data points. The quantity R2 is the coefficient of determination. The inset shows the photoacoustic signal in a wider concentration range (up to 8.2 ppm). The OPO power was 0.5 W.

Fig. 3
Fig. 3

(a) A scanning mode CEPAS spectrum of 17 ppb of HCN in N2. The OPO power was 0.5 W. (b) A scanning mode CEPAS spectrum of 2.1 ppm of HCN in N2. Red lines are least-square fits to measured spectra. The OPO power was 0.6 W.

Fig. 4
Fig. 4

Signal to noise ratios (SNRs) for different PA signal levels at 3331.584 cm−1 with an OPO power of 0.6 W. The inset shows the SNR in a wider PA signal level range. The red slope is a linear least-square fit to the first three points of the SNR vs. the PA signal level plot.

Fig. 5
Fig. 5

A scanning mode CEPAS spectrum of 400 ppb of CH4 in N2. The red dashed line is a least-square fit to the measured spectrum. Below the spectrum is the residual of the fit. The rest dashed lines are simulated 2f spectra for three individual peaks. The OPO power was 0.6 W. The spectrum was recorded with an OPO scanning speed of ~0.012 cm−1/s (~0.360 GHz/s).

Fig. 6
Fig. 6

Allan deviation plots in parts per trillion of the CEPAS signal as a function of the averaging time with the power compensation (red triangles) and without the compensation (black squares). The lower panel shows the measured PA signal without the power compensation. The PA signal was measured in the center of the strongest methane absorption line at 3057.68 cm−1 with an OPO power of 0.6 W.

Tables (1)

Tables Icon

Table 1 Spectral parametersa of measured absorption lines of HCN and CH4.

Metrics