Abstract

We report a correction to the numerical procedure, in which the source vector lacked a factor 1/2 and the integration in Eq. (19) was incorrect. The errors are inconsequential for the main results.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Boundary element method for surface nonlinear optics of nanoparticles

Jouni Mäkitalo, Saku Suuriniemi, and Martti Kauranen
Opt. Express 19(23) 23386-23399 (2011)

Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles

Carsten Rockstuhl, Martin Guy Salt, and Hans Peter Herzig
J. Opt. Soc. Am. A 20(10) 1969-1973 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express 19, 23386–23399 (2011)
    [Crossref] [PubMed]
  2. C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

2011 (1)

Capretti, A.

C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

Forestiere, C.

C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

Kauranen, M.

Mäkitalo, J.

Miano, G.

C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

Suuriniemi, S.

Opt. Express (1)

Other (1)

C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (5)

Equations on this page are rendered with MathJax. Learn more.

𝒦 l f ( r ) = V l [ G l ( r , r ) ] × f ( r ) d S = 1 2 f ( r ) × n l + 𝒦 l f ( r ) ,
𝒦 l f ( r ) = lim a 0 V l D ( r , a ) [ G l ( r , r ) ] × f ( r ) d S
( 𝒟 1 J 1 S + 𝒦 1 M 1 S 𝒟 2 J 2 S 𝒦 2 M 2 S ) tan = 1 2 ε S P n S , ( 𝒦 1 J 1 S + 1 η 1 2 𝒟 1 M 1 S + 𝒦 2 J 2 S 1 η 2 2 𝒟 2 M 2 S ) tan = i 1 2 Ω P S × n .
S P n S = l = 1 N p l f l .
b m n 2 = 1 ε l p l S m S l f m n × f l d S ,

Metrics