Abstract

A compact static birefringent imaging spectrometer (BIS) with spectral zooming capability is presented. It based on two identical Wollaston prisms and has no slit. The most significant advantage of the BIS is that we can conveniently select spectral resolution to adapt to different application requirements and greatly reduce the size of the spectral image data for capturing, saving, transferring, and processing. Also, we show this configuration blend the advantage of a grating spectrometer and a Michelson interferometer: extremely compact, robust, wide free spectral range and very high throughput.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bannon, “Hyperspectral imaging: Cubes and slices,” Nat. Photonics3(11), 627–629 (2009).
    [CrossRef]
  2. R. Gebbers and V. I. Adamchuk, “Precision agriculture and food security,” Science327(5967), 828–831 (2010).
    [CrossRef] [PubMed]
  3. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44(1), 013602 (2005).
    [CrossRef]
  4. J. Li, J. Zhu, and H. Wu, “Compact static Fourier transform imaging spectropolarimeter based on channeled polarimetry,” Opt. Lett.35(22), 3784–3786 (2010).
    [CrossRef] [PubMed]
  5. T. Inoue, K. Itoh, and Y. Ichioka, “Fourier-transform spectral imaging near the image plane,” Opt. Lett.16(12), 934–936 (1991).
    [CrossRef] [PubMed]
  6. J. Y. Hardeberg, F. Schmidt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng.41(10), 2532–2548 (2002).
    [CrossRef]
  7. L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
    [CrossRef]
  8. B. Chen, M. R. Wang, Z. Liu, and J. J. Yang, “Dynamic spectral imaging with spectral zooming capability,” Opt. Lett.32(11), 1518–1520 (2007).
    [CrossRef] [PubMed]
  9. J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun.284(5), 1127–1131 (2011).
    [CrossRef]
  10. A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express12(22), 5368–5374 (2004).
    [CrossRef] [PubMed]
  11. P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
    [CrossRef]
  12. D. Steers, W. Sibbett, and M. J. Padgett, “Dual-purpose, compact spectrometer and fiber-coupled laser wavemeter based on a Wollaston prism,” Appl. Opt.37(24), 5777–5781 (1998).
    [CrossRef] [PubMed]

2011 (1)

J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun.284(5), 1127–1131 (2011).
[CrossRef]

2010 (2)

2009 (1)

D. Bannon, “Hyperspectral imaging: Cubes and slices,” Nat. Photonics3(11), 627–629 (2009).
[CrossRef]

2007 (1)

2005 (1)

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44(1), 013602 (2005).
[CrossRef]

2004 (1)

2002 (1)

J. Y. Hardeberg, F. Schmidt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng.41(10), 2532–2548 (2002).
[CrossRef]

2001 (1)

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

1998 (1)

1993 (1)

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

1991 (1)

Adamchuk, V. I.

R. Gebbers and V. I. Adamchuk, “Precision agriculture and food security,” Science327(5967), 828–831 (2010).
[CrossRef] [PubMed]

Bannon, D.

D. Bannon, “Hyperspectral imaging: Cubes and slices,” Nat. Photonics3(11), 627–629 (2009).
[CrossRef]

Bergman, K.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44(1), 013602 (2005).
[CrossRef]

Brass, J. A.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Brettel, H.

J. Y. Hardeberg, F. Schmidt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng.41(10), 2532–2548 (2002).
[CrossRef]

Chao, T.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

Chen, B.

Cheng, L.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

Dowdy, M.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

Dunagan, S. E.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Fletcher-Holmes, D. W.

Gebbers, R.

R. Gebbers and V. I. Adamchuk, “Precision agriculture and food security,” Science327(5967), 828–831 (2010).
[CrossRef] [PubMed]

Hammer, P. D.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Hardeberg, J. Y.

J. Y. Hardeberg, F. Schmidt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng.41(10), 2532–2548 (2002).
[CrossRef]

Harvey, A. R.

Higgins, R. G.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Hou, X.

J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun.284(5), 1127–1131 (2011).
[CrossRef]

Ichioka, Y.

Inoue, T.

Itoh, K.

Johnson, L. F.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

LaBaw, C.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

Li, J.

J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun.284(5), 1127–1131 (2011).
[CrossRef]

J. Li, J. Zhu, and H. Wu, “Compact static Fourier transform imaging spectropolarimeter based on channeled polarimetry,” Opt. Lett.35(22), 3784–3786 (2010).
[CrossRef] [PubMed]

Liu, Z.

Lobitz, B. M.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Mahoney, J.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

Padgett, M. J.

Peterson, D. L.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Reyes, G.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

Schmidt, F.

J. Y. Hardeberg, F. Schmidt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng.41(10), 2532–2548 (2002).
[CrossRef]

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44(1), 013602 (2005).
[CrossRef]

Sibbett, W.

Slye, R. E.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Smith, W. H.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Steers, D.

Strawa, A. W.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Sullivan, D. V.

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Wang, M. R.

Wu, H.

Yang, J. J.

Zhu, J.

J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun.284(5), 1127–1131 (2011).
[CrossRef]

J. Li, J. Zhu, and H. Wu, “Compact static Fourier transform imaging spectropolarimeter based on channeled polarimetry,” Opt. Lett.35(22), 3784–3786 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE Trans. Geosci. Rem. Sens. (1)

P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001).
[CrossRef]

Nat. Photonics (1)

D. Bannon, “Hyperspectral imaging: Cubes and slices,” Nat. Photonics3(11), 627–629 (2009).
[CrossRef]

Opt. Commun. (1)

J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun.284(5), 1127–1131 (2011).
[CrossRef]

Opt. Eng. (2)

J. Y. Hardeberg, F. Schmidt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng.41(10), 2532–2548 (2002).
[CrossRef]

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44(1), 013602 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993).
[CrossRef]

Science (1)

R. Gebbers and V. I. Adamchuk, “Precision agriculture and food security,” Science327(5967), 828–831 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the developed imaging spectrometer. (b) Ray trace of the beamsplitter constructed by two identical Wollaston prisms. The optic axes of the polarization elements are indicated by arrows and circles.

Fig. 2
Fig. 2

(a) Experiment setup of the developed imaging spectrometer. (b) Photograph of the core optics.

Fig. 3
Fig. 3

Interferogram captured by the described spectrometer with different spacing s between two Wollaston prisms.

Fig. 4
Fig. 4

Theoretical and experimental values of the lateral displacement introduced by WP1 and WP2 at 632.8 nm wavelength.

Fig. 5
Fig. 5

Theoretical and experimental relationships between the spectral resolution and the spacing of two Wollaston prisms at 632.8 nm wavelength.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

OPD=dsini=d x f ,
d= ttan θ 2oe +stan ϕ 2oe 1tanθtan θ 2oe + ttan θ 2eo +stan ϕ 2eo 1+tanθtan θ 2eo ,
θ 2oe =arcsin( n o n e sinθ)θ,
θ 2eo =θarcsin( n e n o sinθ),
ϕ 2oe =arcsin( n e sin(arcsin( n o n e sinθ)θ)),
ϕ 2eo =arcsin( n o sin(θarcsin( n e n o sinθ))),
Δσ= 1 2OPD = f 2( ttan θ 2oe +stan ϕ 2oe 1tanθtan θ 2oe + ttan θ 2eo +stan ϕ 2eo 1+tanθtan θ 2eo )x .
Δ σ max = 2 N λ min ,

Metrics