Abstract

A new concept of compact biochip for surface plasmon-enhanced fluorescence assays is reported. It takes advantage of the amplification of fluorescence signal through the coupling of fluorophore labels with confined and strongly enhanced field intensity of surface plasmons. In order to efficiently excite and collect the emitted fluorescence light via surface plasmons on a metallic sensor surface, (reverse) Kretschmann configuration is combined with diffractive optical elements embedded on the chip surface. These include a concentric relief grating for the imaging of highly directional surface plasmon-coupled emission to a detector. Additional linear grating is used for the generating of surface plasmons at the excitation wavelength on the sensor surface in order to increase the fluorescence excitation rate. The reported approach offers the increased intensity of fluorescence signal, reduced background, and compatibility with nanoimprint lithography for cost-effective preparation of sensor chip. The presented approach was implemented for biosensing in a model immunoassay experiment in which the limit of detection of 11 pM was achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
    [CrossRef]
  2. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
    [CrossRef] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  4. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991).
    [CrossRef] [PubMed]
  5. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
    [CrossRef] [PubMed]
  6. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
    [CrossRef]
  7. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
    [CrossRef] [PubMed]
  8. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp.171(1-3), 115–130 (2000).
    [CrossRef]
  9. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  10. L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
    [CrossRef] [PubMed]
  11. K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011).
    [CrossRef]
  12. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004).
    [CrossRef] [PubMed]
  13. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun.307(3), 435–439 (2003).
    [CrossRef] [PubMed]
  14. J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron.25(6), 1344–1349 (2010).
    [CrossRef] [PubMed]
  15. M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express20(13), 14042–14053 (2012).
    [CrossRef] [PubMed]
  16. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
    [CrossRef]
  17. K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express19(12), 11090–11099 (2011).
    [CrossRef] [PubMed]
  18. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express13(22), 8855–8865 (2005).
    [CrossRef] [PubMed]
  19. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]

2012 (1)

2011 (2)

K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011).
[CrossRef]

K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express19(12), 11090–11099 (2011).
[CrossRef] [PubMed]

2010 (4)

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron.25(6), 1344–1349 (2010).
[CrossRef] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

2009 (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

2008 (4)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004).
[CrossRef] [PubMed]

2003 (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun.307(3), 435–439 (2003).
[CrossRef] [PubMed]

2000 (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp.171(1-3), 115–130 (2000).
[CrossRef]

1991 (1)

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991).
[CrossRef] [PubMed]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Adam, P.

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Attridge, J. W.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Boukherroub, R.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cai, W. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Chazalviel, J. N.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Daniels, P. B.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991).
[CrossRef] [PubMed]

Davidson, G. P.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991).
[CrossRef] [PubMed]

Deacon, J. K.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991).
[CrossRef] [PubMed]

Dostalek, J.

Dostálek, J.

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express20(13), 14042–14053 (2012).
[CrossRef] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Enderlein, J.

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Fort, E.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Fu, Y.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Galopin, E.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Gouget-Laemmel, A. C.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Grésillon, S.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun.307(3), 435–439 (2003).
[CrossRef] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun.307(3), 435–439 (2003).
[CrossRef] [PubMed]

Homola, J.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Kintaka, K.

K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011).
[CrossRef]

Knoll, W.

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express20(13), 14042–14053 (2012).
[CrossRef] [PubMed]

K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express19(12), 11090–11099 (2011).
[CrossRef] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp.171(1-3), 115–130 (2000).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun.307(3), 435–439 (2003).
[CrossRef] [PubMed]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp.171(1-3), 115–130 (2000).
[CrossRef]

MacCraith, B. D.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron.25(6), 1344–1349 (2010).
[CrossRef] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun.307(3), 435–439 (2003).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

McDonagh, C.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron.25(6), 1344–1349 (2010).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Mullen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Nakaoki, T.

K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011).
[CrossRef]

Nishii, J.

K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011).
[CrossRef]

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Ozanam, F.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Ray, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Robinson, G. A.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991).
[CrossRef] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Ruckstuhl, T.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Sonnefraud, Y.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Szunerits, S.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Tawa, K.

K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Toma, K.

Toma, M.

Touahir, L.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Trnavsky, M.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron.25(6), 1344–1349 (2010).
[CrossRef] [PubMed]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Yokota, Y.

K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011).
[CrossRef]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Yuk, J. S.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron.25(6), 1344–1349 (2010).
[CrossRef] [PubMed]

Zhang, J.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun.307(3), 435–439 (2003).
[CrossRef] [PubMed]

Biointerphases (1)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Biosens. Bioelectron. (3)

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991).
[CrossRef] [PubMed]

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron.25(6), 1344–1349 (2010).
[CrossRef] [PubMed]

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp.171(1-3), 115–130 (2000).
[CrossRef]

J. Phys. D Appl. Phys. (1)

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Opt. Express (3)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Sens. Actuators B Chem. (1)

K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011).
[CrossRef]

Small (1)

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Preparation of the concentric grating element (CG) by using sequential recording into a photoresist by using interference lithography. (b) The transfer of grating elements onto the biochip surface by using UV-NIL.

Fig. 2
Fig. 2

Optical setups (a) for the observation of imaging properties of CG element and coupling efficiency of LG element and (b) for the model immunoassay experiment with the developed biochip.

Fig. 3
Fig. 3

Simulated emission probability from a randomly oriented dipole occurring via optical waves propagating into free space, surface plasmons (SPCE) and surface lossy waves (quenching) as a function of the distance from a metal surface d.

Fig. 4
Fig. 4

Simulated dependence of the fluorescence intensity F of SPCE from a randomly oriented dipole at the distance d = 20 nm from the gold surface at the wavelength of λem = 670 nm (black solid line) on the polar angle θem. The electric field intensity enhancement |E/E0|2 at d = 20 nm due the excitation of SPs at the wavelength λex = 633 nm is shown as a function of the angle of incidence θex (red dashed line).

Fig. 5
Fig. 5

(a) Schematic of the biochip with diffractive optical elements for the in-coupling of the excitation beam to the biochip (linear grating: LG) and for the out-coupling and imaging of surface plasmon-coupled emission (SPCE) to a detector (concentric grating: CG). (b) Side-view of the biochip.

Fig. 6
Fig. 6

Simulated (line) and measured (squares) dependence of the concentric grating (CG) period on the distance from its center.

Fig. 7
Fig. 7

Simulated diffraction efficiency in the ± 1st orders as a function of the grating depth for (a) the sinusoidal concentric grating (CG) element (Λ = 346 nm) for the TM polarized light beam incident at the emission angle θem = 71 deg at the emission wavelength λem = 670 nm and (b) for the sinusoidal linear grating (LG) element with the period of Λ = 437 nm and normal incident TM polarized beam at the wavelength of λex = 633 nm.

Fig. 8
Fig. 8

(a) Top view of prepared biochip carrying LG and CG diffractive elements (left) and observed spatial distribution of out-coupled SPCE intensity at the distance below the biochip of D = 1, 5, 10 and 15 mm (right). (b) The cross-section of the fluorescence intensity at the distance of D = 15 mm for angular width of the CG element δ = 3 and 10 deg.

Fig. 9
Fig. 9

(a) Measured binding kinetics F(t) upon the sequential flow of samples with a-mIgG along the surface carrying the specific affinity partner mIgG (black) and control molecules rIgG (red). The inserted graph shows the magnified fluorescence intensity F(t) for the concentration from 30 pM to 1 nM. b) Calibration curve of the developed biochip fitted with a linear function. The baseline noise and LOD are indicated.

Metrics