Abstract

In this paper we present a technique that can be used to study the effect of absorption and coherent interference in the luminescence of multilayer structures. We apply the technique to the measured photoluminescence and electroluminescence spectra of MIS capacitors where the insulator is composed of a silicon rich oxide (SRO)/silicon rich nitride (SRN) bilayer structure. We remove the effect of the multilayer stack on the measured photoluminescence spectrum of the samples without the metal contact to find the intrinsic spectrum. Then we apply the effect of the MIS structure on the intrinsic spectrum in order to calculate the electroluminescence spectrum. Good agreement with the experimentally measured EL spectrum is found. We discuss which parameters affect the spectra most significantly.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
    [CrossRef]
  2. M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
    [CrossRef]
  3. A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
    [CrossRef]
  4. O. Crawford, “Radiation from oscillating dipoles embedded in a layered system,” J. Chem. Phys. 89, 6017–6027 (1988).
    [CrossRef]
  5. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
  6. J. Ziegler, “SRIM-2003,” Nucl. Instrum. Meth. B 219–220, 1027–1036 (2004).
    [CrossRef]
  7. L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
    [CrossRef]
  8. J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
    [CrossRef]
  9. B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
    [CrossRef]
  10. C. Domínguez, J. A. Rodríguez, F. J. Muñoz, N. Zine, “Plasma enhanced CVD silicon oxide films for integrated optic applications,” Vacuum 52, 395–400 (1999).
    [CrossRef]
  11. X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
    [CrossRef]
  12. H. Z. Song, X. M. Bao, “Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms,” Phys. Rev. B 55, 6988–6993 (1997).
    [CrossRef]
  13. P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
    [CrossRef]
  14. R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals.” Nature Mater. 4, 143–146 (2005).
    [CrossRef]

2012

A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
[CrossRef]

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

2011

J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
[CrossRef]

2009

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

2006

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

2005

R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals.” Nature Mater. 4, 143–146 (2005).
[CrossRef]

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

2004

J. Ziegler, “SRIM-2003,” Nucl. Instrum. Meth. B 219–220, 1027–1036 (2004).
[CrossRef]

2002

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

1999

C. Domínguez, J. A. Rodríguez, F. J. Muñoz, N. Zine, “Plasma enhanced CVD silicon oxide films for integrated optic applications,” Vacuum 52, 395–400 (1999).
[CrossRef]

1997

H. Z. Song, X. M. Bao, “Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms,” Phys. Rev. B 55, 6988–6993 (1997).
[CrossRef]

1988

O. Crawford, “Radiation from oscillating dipoles embedded in a layered system,” J. Chem. Phys. 89, 6017–6027 (1988).
[CrossRef]

Aceves-Mijares, M.

A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
[CrossRef]

Anopchenko, A.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Atwater, H. A.

R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals.” Nature Mater. 4, 143–146 (2005).
[CrossRef]

Bao, X. M.

H. Z. Song, X. M. Bao, “Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms,” Phys. Rev. B 55, 6988–6993 (1997).
[CrossRef]

Barreto, J.

A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
[CrossRef]

J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
[CrossRef]

Bellutti, P.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Bonafos, C.

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Bourianoff, G. I.

R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals.” Nature Mater. 4, 143–146 (2005).
[CrossRef]

Carrada, M.

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

Cen, Z.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

Chang, T.-W. F.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

Chen, T. P.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

Cheng, B.

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

Claverie, A.

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

Crawford, O.

O. Crawford, “Radiation from oscillating dipoles embedded in a layered system,” J. Chem. Phys. 89, 6017–6027 (1988).
[CrossRef]

Dal Negro, L.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

Ding, L.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

Domínguez, C.

A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
[CrossRef]

J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
[CrossRef]

C. Domínguez, J. A. Rodríguez, F. J. Muñoz, N. Zine, “Plasma enhanced CVD silicon oxide films for integrated optic applications,” Vacuum 52, 395–400 (1999).
[CrossRef]

Finstad, T. G.

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

García, C.

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

Garrido, B.

J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
[CrossRef]

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

Ge, W.

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

González-Fernández, A. A.

A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
[CrossRef]

Juvert, J.

A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
[CrossRef]

Kepaptsoglou, D. M.

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

Kimerling, L. C.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

Liu, Y.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

López, M.

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

Marconi, A.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Michel, J.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

Montserrat, J.

J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
[CrossRef]

Morales, A.

J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
[CrossRef]

Morales-Sánchez, A.

A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
[CrossRef]

Morante, J. R.

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

Moser, E.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Muñoz, F. J.

C. Domínguez, J. A. Rodríguez, F. J. Muñoz, N. Zine, “Plasma enhanced CVD silicon oxide films for integrated optic applications,” Vacuum 52, 395–400 (1999).
[CrossRef]

Nguyen, P. D.

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

Olsen, A.

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

Pavesi, L.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Perálvarez, M.

J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
[CrossRef]

Pérez-Rodríguez, A.

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

Prezioso, S.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Pucker, G.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Ramasse, Q. M.

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

Rodríguez, J. A.

C. Domínguez, J. A. Rodríguez, F. J. Muñoz, N. Zine, “Plasma enhanced CVD silicon oxide films for integrated optic applications,” Vacuum 52, 395–400 (1999).
[CrossRef]

Sargent, E. H.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

Song, H. Z.

H. Z. Song, X. M. Bao, “Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms,” Phys. Rev. B 55, 6988–6993 (1997).
[CrossRef]

Sukhovatkin, V.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

Sunding, M. F.

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

Tseng, A. A.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

Vanzetti, L.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Vestland, L. O.

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

Walters, R. J.

R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals.” Nature Mater. 4, 143–146 (2005).
[CrossRef]

Wang, M.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Wang, Q.

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

Wang, X.

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Wong, J. I.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

Yang, M.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

Yi, J. H.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

Yu, J.

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

Zhang, J.

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

Zhu, F.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

Ziegler, J.

J. Ziegler, “SRIM-2003,” Nucl. Instrum. Meth. B 219–220, 1027–1036 (2004).
[CrossRef]

Zine, N.

C. Domínguez, J. A. Rodríguez, F. J. Muñoz, N. Zine, “Plasma enhanced CVD silicon oxide films for integrated optic applications,” Vacuum 52, 395–400 (1999).
[CrossRef]

Appl. Phys. Lett.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett. 88, 233109 (2006).
[CrossRef]

IEEE Trans. Electron Dev.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, A. A. Tseng, “Relationship Between Current Transport and Electroluminescence in Si+-Implanted SiO2 Thin Films,” IEEE Trans. Electron Dev. 56, 2785–2791 (2009).
[CrossRef]

J. Appl. Phys.

B. Garrido, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798–807 (2002).
[CrossRef]

A. A. González-Fernández, J. Juvert, A. Morales-Sánchez, J. Barreto, M. Aceves-Mijares, C. Domínguez, “Comparison of electrical and electro-optical characteristics of light-emitting capacitors based on silicon-rich Si-oxide fabricated by plasma-enhanced chemical vapor deposition and ion implantation,” J. Appl. Phys. 111, 053109 (2012).
[CrossRef]

P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, M. F. Sunding, L. O. Vestland, T. G. Finstad, A. Olsen, “Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films,” J. Appl. Phys. 112, 073514 (2012).
[CrossRef]

J. Chem. Phys.

O. Crawford, “Radiation from oscillating dipoles embedded in a layered system,” J. Chem. Phys. 89, 6017–6027 (1988).
[CrossRef]

J. Mater. Res.

J. Barreto, M. Perálvarez, A. Morales, B. Garrido, J. Montserrat, C. Domínguez, “Broad range adjustable emission of stacked SiN x/SiO y layers,” J. Mater. Res. 23, 1513–1516 (2011).
[CrossRef]

Nature Mater.

R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals.” Nature Mater. 4, 143–146 (2005).
[CrossRef]

Nucl. Instrum. Meth. B

J. Ziegler, “SRIM-2003,” Nucl. Instrum. Meth. B 219–220, 1027–1036 (2004).
[CrossRef]

Phys. Rev. B

X. Wang, J. Zhang, L. Ding, B. Cheng, W. Ge, J. Yu, Q. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 195313 (2005).
[CrossRef]

H. Z. Song, X. M. Bao, “Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms,” Phys. Rev. B 55, 6988–6993 (1997).
[CrossRef]

Physica E

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41, 912–915 (2009).
[CrossRef]

Vacuum

C. Domínguez, J. A. Rodríguez, F. J. Muñoz, N. Zine, “Plasma enhanced CVD silicon oxide films for integrated optic applications,” Vacuum 52, 395–400 (1999).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of a general layered system with the coordinate system proposed in reference [4]. In our work the layers are numbered for convenience in the range [0, N] instead of [1, N].

Fig. 2
Fig. 2

Typical normalized PL of SRO and SRN layers.

Fig. 3
Fig. 3

Measured PL of the double active layer system. The spectrum has been fitted with two bands, each one consisting of two Gaussian. One of the bands clearly corresponds to emission in the SRO layer and the other to emission in the SRN layer. The fit line corresponds to the sum of the two bands.

Fig. 4
Fig. 4

Measured EL of the double active layer samples and two calculated EL spectra (circles). Spectrum S1 has been calculated considering a uniform distribution of the emission in the double active layer and the measured thickness of the polysilicon gate. Spectrum S2 has been found considering an exponential distribution with d = 21 nm and a 305 nm thick polysilicon gate.

Fig. 5
Fig. 5

The symbols correspond to the bands of the measured PL spectra as extracted from the multipeak fitting shown in Fig. 3. The intrinsic lines correspond to the calculated bands after removing the effect of the stack. The total intrinsic line is the total intrinsic spectrum calculated as the sum of the intrinsic SRO and SRN bands.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d W d Ω = c 8 π ( ω c ) 4 ε 0 1 2 × ( | p y F y ( z ) | 2 + | p x F x ( z ) cos θ 0 p z F z ( z ) sin θ 0 | 2 )
E obs = | F y ( z ) | 2 E int
F y ( z ) = t 0 j ( j + 1 ) ( 1 + r j j + 1 ( N j + 1 ) e 2 i η j ( z z j ) 1 r j j + 1 ( N j + 1 ) r j j 1 ( j + 1 ) e 2 i η j d j × e i η 0 ( z z 0 ) i η j ( z z j 1 )
f obs ( λ ) = | F y ( z ; λ ) | 2 f int ( λ )
f obs ( λ ) = | F y ( z ; λ ) | 2 g ( z ) f ¯ int ( λ , z ) d z
f int ( λ ; z ) = g ( z ) f ¯ int ( λ ; z )
0 f ¯ int ( λ ; z ) d λ = 1
0 f int ( λ ; z ) d λ = 0 g ( z ) f ¯ int ( λ ; z ) d λ = g ( z )
0 d λ g ( z ) f ¯ int ( λ , z ) d z = 1
0 f ¯ int ( λ ) d λ = g ( z ) d z = 1
f obs ( λ ) = f ¯ int ( 1 ) ( λ ) z i z m | F y ( z ; λ ) | 2 g ( z ) d z + f ¯ int ( 2 ) ( λ ) z m z f | F y ( z ; λ ) | 2 g ( z ) d z
f obs ( λ ) = f obs ( 1 ) ( λ ) + f obs ( 2 ) ( λ )
f obs ( 1 ) ( λ ) = f ¯ int ( 1 ) ( λ ) z i z m | F y ( z ; λ ) | 2 g ( z ) d z
f obs ( 2 ) ( λ ) = f ¯ int ( 2 ) ( λ ) z m z f | F y ( z ; λ ) | 2 g ( z ) d z
z i z f | F y ( z ; λ ) | 2 d z
g ( z ) = A exp ( z d )

Metrics