Abstract

We have demonstrated the highest reported output power from a mid-IR ZGP OPO. The laser is a cascaded hybrid system consisting of a thulium fibre laser, Ho:YAG solid state laser and a Zinc Germanium Phosphide parametric oscillator. The system produces 27 W of output power in the 3-5 μm wavelength range with an M2 = 4.0 when operating in a repetitively q-switched mode, and a modulated peak output power of 99 W at a reduced duty cycle of 25%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express18(25), 26475–26483 (2010).
    [PubMed]
  2. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010). http://dx.doi.org/10.5772/3033 .
  3. E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power ponversion to mid-IR using KTP and ZGP OPOs,” in Advanced Solid-State Lasers, OSA Technical Digest (CD) (Optical Society of America, 1999), paper WC1. http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1999-WC1 .
  4. D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282, 272–275 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.064 .
  5. L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper 142. http://www.opticsinfobase.org/abstract.cfm?URI=URI=ASSP-2003-142 .
  6. L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .
  7. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .
  8. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B17, 723–728 (2000), http://dx.doi.org/10.1364/JOSAB.17.000723 .
  9. Y.-J. Shen, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “Resonantly pumped high efficiency Ho:YAG laser,” Appl. Opt.51(33), 7887–7890 (2012), http://dx.doi.org/10.1364/AO.51.007887 .
    [PubMed]
  10. Y.-J. Shen, B.-Q. Yao, X.-M. Duan, G.-L. Zhu, W. Wang, Y.-L. Ju, and Y.-Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett.37(17), 3558–3560 (2012), http://ol.osa.org/abstract.cfm?URI=ol-37-17-3558 .
    [PubMed]
  11. D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett.33(4), 315–317 (2008), http://dx.doi.org/10.1364/OL.33.000315 .
    [PubMed]
  12. I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE7325, 73250I (2009), http://dx.doi.org/10.1117/12.818553 .
  13. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .
  14. A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .
  15. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .
  16. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt.45(16), 3839–3845 (2006), http://dx.doi.org/10.1364/AO.45.003839 .
    [PubMed]
  17. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam,” Opt. Lett.25(22), 1654–1656 (2000), http://dx.doi.org/10.1364/OL.25.001654 .
    [PubMed]

2012

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Y.-J. Shen, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “Resonantly pumped high efficiency Ho:YAG laser,” Appl. Opt.51(33), 7887–7890 (2012), http://dx.doi.org/10.1364/AO.51.007887 .
[PubMed]

Y.-J. Shen, B.-Q. Yao, X.-M. Duan, G.-L. Zhu, W. Wang, Y.-L. Ju, and Y.-Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett.37(17), 3558–3560 (2012), http://ol.osa.org/abstract.cfm?URI=ol-37-17-3558 .
[PubMed]

2010

E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express18(25), 26475–26483 (2010).
[PubMed]

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

2009

D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282, 272–275 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.064 .

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE7325, 73250I (2009), http://dx.doi.org/10.1117/12.818553 .

2008

2006

2004

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

2000

Abdolvand, A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

Arisholm, G.

Armstrong, D.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Bennetts, S.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Budni, P. A.

Carmody, N.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Chicklis, E. P.

Clarkson, W. A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

Cooper, L. J.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

Corena, L.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Creeden, D.

Dai, T.-Y.

Davidson, A.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Davies, P.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Dergachev, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Drake, T.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Duan, X.-M.

Dubois, M.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Elder, I.

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE7325, 73250I (2009), http://dx.doi.org/10.1117/12.818553 .

Fonnum, H.

Fuhrberg, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Hemming, A.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Hongshu, L.

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

Jiang, M.

Ju, Y.-L.

Ketteridge, P. A.

Koopmann, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Lamrini, S.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Lancaster, D.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Lancaster, D. G.

D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282, 272–275 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.064 .

Lemons, M. L.

Lippert, E.

McCarthy, J. C.

Miller, C. A.

Ming, Z.

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

Mosto, J. R.

Nicolas, S.

Pollak, T. M.

Pomeranz, L. A.

Richards, J.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Rustad, G.

Schäfer, M.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Scholle, K.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Schunemann, P. G.

Setzler, S. D.

Shen, D. Y.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

Shen, Y.-J.

Smith, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Stenersen, K.

Wang, W.

Wang, Y.-Z.

Wenhai, X.

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

Yao, B.-Q.

Young, Y. E.

Zawilski, K.

Zhu, G.-L.

Appl. Opt.

Appl. Phys. B

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

J. Opt. Soc. Am. B

J. Russ. Laser Res.

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

Opt. Commun.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282, 272–275 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.064 .

Opt. Express

Opt. Lett.

Proc. SPIE

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE7325, 73250I (2009), http://dx.doi.org/10.1117/12.818553 .

Other

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010). http://dx.doi.org/10.5772/3033 .

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power ponversion to mid-IR using KTP and ZGP OPOs,” in Advanced Solid-State Lasers, OSA Technical Digest (CD) (Optical Society of America, 1999), paper WC1. http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1999-WC1 .

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper 142. http://www.opticsinfobase.org/abstract.cfm?URI=URI=ASSP-2003-142 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the mid-IR laser system. HR: High reflector, OC: output coupler, HWP: half-wave plate, TFP: Dichroic thin film polarizer (HR s-pol 2.09 μm, AR r-pol 1.908 μm).

Fig. 2
Fig. 2

Schematic of monolithic thulium fibre lasers.

Fig. 3
Fig. 3

(a) Thulium fibre laser RQSW output power. (b) Ho:YAG laser RQSW output power. (c) Ho:YAG output pulse shape. (d) Beam quality of Ho:YAG as a function of output power, Inset: Near field beam profile at 44 W of output power.

Fig. 4
Fig. 4

(a) ZGP OPO, single and double-pass output powers. (b) Output spectrum of ZGP OPO. Inset: Variation in OPO output beam quality with ZGP OPO output power.

Fig. 5
Fig. 5

(a) Thulium fibre laser QCW output power. (b) Ho:YAG laser QCW output power. (c) Temporal dynamics of the cascaded laser system, (i) pump diode waveform, (ii) thulium fibre laser output waveform, (iii) q-switched Ho:YAG laser output waveform. Inset: Thulium fibre laser relaxation oscillations. (d) Double pass ZGP OPO QCW output power.

Tables (1)

Tables Icon

Table 1 Single and double pass ZGP OPO configurations

Metrics