Abstract

We have demonstrated the highest reported output power from a mid-IR ZGP OPO. The laser is a cascaded hybrid system consisting of a thulium fibre laser, Ho:YAG solid state laser and a Zinc Germanium Phosphide parametric oscillator. The system produces 27 W of output power in the 3-5 μm wavelength range with an M2 = 4.0 when operating in a repetitively q-switched mode, and a modulated peak output power of 99 W at a reduced duty cycle of 25%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express18(25), 26475–26483 (2010).
    [PubMed]
  2. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010). http://dx.doi.org/10.5772/3033 .
  3. E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power ponversion to mid-IR using KTP and ZGP OPOs,” in Advanced Solid-State Lasers, OSA Technical Digest (CD) (Optical Society of America, 1999), paper WC1. http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1999-WC1 .
  4. D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282, 272–275 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.064 .
  5. L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper 142. http://www.opticsinfobase.org/abstract.cfm?URI=URI=ASSP-2003-142 .
  6. L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .
  7. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .
  8. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B17, 723–728 (2000), http://dx.doi.org/10.1364/JOSAB.17.000723 .
  9. Y.-J. Shen, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “Resonantly pumped high efficiency Ho:YAG laser,” Appl. Opt.51(33), 7887–7890 (2012), http://dx.doi.org/10.1364/AO.51.007887 .
    [PubMed]
  10. Y.-J. Shen, B.-Q. Yao, X.-M. Duan, G.-L. Zhu, W. Wang, Y.-L. Ju, and Y.-Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett.37(17), 3558–3560 (2012), http://ol.osa.org/abstract.cfm?URI=ol-37-17-3558 .
    [PubMed]
  11. D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett.33(4), 315–317 (2008), http://dx.doi.org/10.1364/OL.33.000315 .
    [PubMed]
  12. I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE7325, 73250I (2009), http://dx.doi.org/10.1117/12.818553 .
  13. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .
  14. A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .
  15. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .
  16. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt.45(16), 3839–3845 (2006), http://dx.doi.org/10.1364/AO.45.003839 .
    [PubMed]
  17. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam,” Opt. Lett.25(22), 1654–1656 (2000), http://dx.doi.org/10.1364/OL.25.001654 .
    [PubMed]

2012

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Y.-J. Shen, B.-Q. Yao, X.-M. Duan, G.-L. Zhu, W. Wang, Y.-L. Ju, and Y.-Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett.37(17), 3558–3560 (2012), http://ol.osa.org/abstract.cfm?URI=ol-37-17-3558 .
[PubMed]

Y.-J. Shen, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “Resonantly pumped high efficiency Ho:YAG laser,” Appl. Opt.51(33), 7887–7890 (2012), http://dx.doi.org/10.1364/AO.51.007887 .
[PubMed]

2010

E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express18(25), 26475–26483 (2010).
[PubMed]

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

2009

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE7325, 73250I (2009), http://dx.doi.org/10.1117/12.818553 .

D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282, 272–275 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.064 .

2008

2006

2004

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

2000

Abdolvand, A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

Arisholm, G.

Armstrong, D.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Bennetts, S.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Budni, P. A.

Carmody, N.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Chicklis, E. P.

Clarkson, W. A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

Cooper, L. J.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

Corena, L.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Creeden, D.

Dai, T.-Y.

Davidson, A.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Davies, P.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Dergachev, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Drake, T.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Duan, X.-M.

Dubois, M.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Elder, I.

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE7325, 73250I (2009), http://dx.doi.org/10.1117/12.818553 .

Fonnum, H.

Fuhrberg, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Hemming, A.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Hongshu, L.

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

Jiang, M.

Ju, Y.-L.

Ketteridge, P. A.

Koopmann, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Lamrini, S.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Lancaster, D.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Lancaster, D. G.

D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282, 272–275 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.064 .

Lemons, M. L.

Lippert, E.

McCarthy, J. C.

Miller, C. A.

Ming, Z.

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

Mosto, J. R.

Nicolas, S.

Pollak, T. M.

Pomeranz, L. A.

Richards, J.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

Rustad, G.

Schäfer, M.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Scholle, K.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

Schunemann, P. G.

Setzler, S. D.

Shen, D. Y.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

Shen, Y.-J.

Smith, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

Stenersen, K.

Wang, W.

Wang, Y.-Z.

Wenhai, X.

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

Yao, B.-Q.

Young, Y. E.

Zawilski, K.

Zhu, G.-L.

Appl. Opt.

Appl. Phys. B

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012), http://dx.doi.org/10.1007/s00340-011-4670-5 .

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B79, 559–561 (2004), http://dx.doi.org/10.1007/s00340-004-1562-y .

J. Opt. Soc. Am. B

J. Russ. Laser Res.

L. Hongshu, Z. Ming, and X. Wenhai, “High-power, high-efficiency cw diode-pumped Tm:YAP laser emitting at 1.99 μm,” J. Russ. Laser Res.33, 307–309 (2012), http://dx.doi.org/10.1007/s10946-012-9286-7 .

Opt. Commun.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun.283, 4041–4045 (2010), http://dx.doi.org/10.1016/j.optcom.2010.05.078 .

D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282, 272–275 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.064 .

Opt. Express

Opt. Lett.

Proc. SPIE

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE6875, 687507 (2008), http://dx.doi.org/10.1117/12.765275 .

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE7325, 73250I (2009), http://dx.doi.org/10.1117/12.818553 .

Other

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper 142. http://www.opticsinfobase.org/abstract.cfm?URI=URI=ASSP-2003-142 .

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010). http://dx.doi.org/10.5772/3033 .

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power ponversion to mid-IR using KTP and ZGP OPOs,” in Advanced Solid-State Lasers, OSA Technical Digest (CD) (Optical Society of America, 1999), paper WC1. http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1999-WC1 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the mid-IR laser system. HR: High reflector, OC: output coupler, HWP: half-wave plate, TFP: Dichroic thin film polarizer (HR s-pol 2.09 μm, AR r-pol 1.908 μm).

Fig. 2
Fig. 2

Schematic of monolithic thulium fibre lasers.

Fig. 3
Fig. 3

(a) Thulium fibre laser RQSW output power. (b) Ho:YAG laser RQSW output power. (c) Ho:YAG output pulse shape. (d) Beam quality of Ho:YAG as a function of output power, Inset: Near field beam profile at 44 W of output power.

Fig. 4
Fig. 4

(a) ZGP OPO, single and double-pass output powers. (b) Output spectrum of ZGP OPO. Inset: Variation in OPO output beam quality with ZGP OPO output power.

Fig. 5
Fig. 5

(a) Thulium fibre laser QCW output power. (b) Ho:YAG laser QCW output power. (c) Temporal dynamics of the cascaded laser system, (i) pump diode waveform, (ii) thulium fibre laser output waveform, (iii) q-switched Ho:YAG laser output waveform. Inset: Thulium fibre laser relaxation oscillations. (d) Double pass ZGP OPO QCW output power.

Tables (1)

Tables Icon

Table 1 Single and double pass ZGP OPO configurations

Metrics