Abstract

We experimentally investigated the vector multi-soliton operation and vector soliton interaction in an erbium doped fiber laser passively mode locked by atomic layer graphene. It is found that the vector multi-soliton operation exhibited several characteristic modes. These are the random static distribution of vector solitons, stable bunches of vector solitons, restless oscillations of vector solitons, rain of vector solitons, and emission of a so-called “giant vector soliton”. The formation mechanisms of the operation modes were also experimentally investigated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
    [CrossRef]
  2. P. Grelu and J. M. Soto-Crespo, “Temporal soliton molecules in mode-locked lasers: collisions, pulsations and vibrations,” in Dissipative solitons: from optics to biology and medicine, N. Akhmediev and A. Ankiewicz, eds. (Springer-Verlag, 2008).
  3. P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. Soc. Am.B.6(5), S271–S278 (2004).
    [CrossRef]
  4. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons: From optics to biology and medicine (Springer, Berlin-Heidelberg, 2008), Lecture Notes in Physics, V 751.
  5. M. Olivier, V. Roy, M. Piché, and F. Babin, “Pulse collisions in the stretched-pulse fiber laser,” Opt. Lett.29(13), 1461–1463 (2004).
    [CrossRef] [PubMed]
  6. M. Grapinet and Ph. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett.31(14), 2115–2117 (2006).
    [CrossRef] [PubMed]
  7. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009).
    [CrossRef] [PubMed]
  8. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked laser,” Phys. Rev. A64(3), 033814 (2001).
    [CrossRef]
  9. S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A81(6), 063829 (2010).
    [CrossRef]
  10. S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express17(14), 11776–11781 (2009).
    [CrossRef] [PubMed]
  11. J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, “Vector soliton fiber lasers,” Opt. Lett.24(6), 376–378 (1999).
    [CrossRef] [PubMed]
  12. S. T. Cundiff, B. C. Collings, and W. H. Knox, “Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser,” Opt. Express1(1), 12–21 (1997).
    [CrossRef] [PubMed]
  13. V. V. Afanasjev, “Soliton polarization rotation in fiber lasers,” Opt. Lett.20(3), 270–272 (1995).
    [CrossRef] [PubMed]
  14. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett.14(18), 1011–1013 (1989).
    [CrossRef] [PubMed]
  15. R. Gumenyuk and O. G. Okhotnikov, “Temporal control of vector soliton bunching by slow/fast saturable absorption,” J. Opt. Soc. Am. B29(1), 1–7 (2012).
    [CrossRef]
  16. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  17. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
    [CrossRef]
  18. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
    [CrossRef] [PubMed]
  19. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
    [CrossRef] [PubMed]
  20. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
    [CrossRef]
  21. H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express16(17), 12618–12623 (2008).
    [CrossRef] [PubMed]
  22. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016616 (2005).
    [CrossRef] [PubMed]
  23. Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express20(24), 27283–27289 (2012).
    [CrossRef] [PubMed]

2012 (2)

2010 (3)

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A81(6), 063829 (2010).
[CrossRef]

2009 (4)

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express17(14), 11776–11781 (2009).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

2008 (1)

2006 (1)

2005 (2)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016616 (2005).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

2004 (2)

P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. Soc. Am.B.6(5), S271–S278 (2004).
[CrossRef]

M. Olivier, V. Roy, M. Piché, and F. Babin, “Pulse collisions in the stretched-pulse fiber laser,” Opt. Lett.29(13), 1461–1463 (2004).
[CrossRef] [PubMed]

2001 (1)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked laser,” Phys. Rev. A64(3), 033814 (2001).
[CrossRef]

1999 (1)

1997 (1)

1995 (1)

1992 (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

1989 (1)

Afanasjev, V. V.

Babin, F.

Bao, Q.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Bulovic, V.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Chouli, S.

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A81(6), 063829 (2010).
[CrossRef]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express17(14), 11776–11781 (2009).
[CrossRef] [PubMed]

Collings, B. C.

Cundiff, S. T.

Dresselhaus, M. S.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Drummond, P. D.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked laser,” Phys. Rev. A64(3), 033814 (2001).
[CrossRef]

Ferrari, A. C.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Gordon, J. P.

Grapinet, M.

Grelu, P.

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A81(6), 063829 (2010).
[CrossRef]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express17(14), 11776–11781 (2009).
[CrossRef] [PubMed]

P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. Soc. Am.B.6(5), S271–S278 (2004).
[CrossRef]

Grelu, Ph.

Gumenyuk, R.

Hasan, T.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Haus, J. W.

Ho, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Islam, M. N.

Jia, X.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

Knox, W. H.

Kong, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Kuzin, E. A.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

Loh, K. P.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Man, W. S.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked laser,” Phys. Rev. A64(3), 033814 (2001).
[CrossRef]

Nezich, D.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Okhotnikov, O. G.

Olivier, M.

Piché, M.

Poole, C. D.

Popa, D.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Reina, A.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Roy, V.

Sanchez-Mondragon, J.

Shaulov, G.

Shen, Y.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Son, H.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Song, Y. F.

Soto-Crespo, J. M.

P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. Soc. Am.B.6(5), S271–S278 (2004).
[CrossRef]

Sun, Z.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Tam, H. Y.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016616 (2005).
[CrossRef] [PubMed]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked laser,” Phys. Rev. A64(3), 033814 (2001).
[CrossRef]

Tang, D. Y.

Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express20(24), 27283–27289 (2012).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express16(17), 12618–12623 (2008).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016616 (2005).
[CrossRef] [PubMed]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked laser,” Phys. Rev. A64(3), 033814 (2001).
[CrossRef]

Torrisi, F.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Wang, F.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wu, X.

Xiang, N.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Zhang, H.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016616 (2005).
[CrossRef] [PubMed]

Zhao, L. M.

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am.B. (1)

P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. Soc. Am.B.6(5), S271–S278 (2004).
[CrossRef]

Nano Lett. (1)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. A (3)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked laser,” Phys. Rev. A64(3), 033814 (2001).
[CrossRef]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A81(6), 063829 (2010).
[CrossRef]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016616 (2005).
[CrossRef] [PubMed]

Other (2)

P. Grelu and J. M. Soto-Crespo, “Temporal soliton molecules in mode-locked lasers: collisions, pulsations and vibrations,” in Dissipative solitons: from optics to biology and medicine, N. Akhmediev and A. Ankiewicz, eds. (Springer-Verlag, 2008).

N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons: From optics to biology and medicine (Springer, Berlin-Heidelberg, 2008), Lecture Notes in Physics, V 751.

Supplementary Material (3)

» Media 1: MOV (3138 KB)     
» Media 2: MOV (3504 KB)     
» Media 3: MOV (3124 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic diagram of the fiber ring laser. SMF: Single-mode fiber, PC: Polarization controller, EDF: Erbium doped fiber, WDM: Wavelength-division multiplexer.

Fig. 2
Fig. 2

A typical multiple vector soliton bunch state of the fiber laser. (a) and (b) the oscilloscope trace; (c) the details of the soliton bunch; (d) Polarization resolved optical spectra. Blue line: the total output; Red line: along the horizontal axis; Green line: along the vertical axis. (e) Autocorrelation trace.

Fig. 3
Fig. 3

Random static vector soliton distribution at a low pump power.

Fig. 4
Fig. 4

Bunch of restless vector solitons (video). (a) Soliton bunch moving in the cavity (Media 1); (b) Solitons oscillating in the bunch (Media 2).

Fig. 5
Fig. 5

Polarization locked vector soliton rains: (a) A typical soliton rain at a pump power of 140 mW; (b) zoom-in of the soliton condense phase; (c) Soltion rain at a pump power of 200 mW; (d) Video record of the vector soliton rain (Media 3).

Fig. 6
Fig. 6

(a) Oscilloscope traces of the polarization locked vector soliton rain. Blue line: the total output; Green line: along the horizontal axis; Red line: along the vertical axis. (b) Oscilloscope traces of the polarization rotating vector soliton rain. Blue line: the total output; Green line: along the horizontal axis; Red line: along the vertical axis. (c) The optical spectrum of the polarization rotating vector soliton rain.

Fig. 7
Fig. 7

A giant pulse state obtained at 200 mW pump power. (a) Oscilloscope trace; (b) High-speed measurement of the giant pulse; (c) Autocorrelation trace (inset: zoom-in of the trace); (d) Optical spectrum.

Metrics