Abstract

Record-high 19.25Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) colorless transmissions across the entire C-band are experimentally demonstrated, for the first time, in reflective electro-absorption modulator (REAM)-based 25km standard SMF systems using intensity modulation and direct detection. Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting signal line rates of 9.75Gb/s and 9.5Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100MHz as well as DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically multiplexed for intensity modulation of a single optical carrier by an 8GHz REAM. The REAM colorlessness is experimentally characterized, based on which optimum REAM operating conditions are identified. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive transceiver optimization functions and live performance monitoring are fully exploited to optimize key OOFDM transceiver and system parameters. For different wavelengths within the C-band, corresponding minimum received optical powers at the FEC limit vary in a range of <0.5dB and bit error rate performances for both baseband and passband signals are almost identical. Furthermore, detailed investigations are also undertaken of the maximum aggregated signal line rate sensitivity to electrical sub-band power variation. It is shown that the aforementioned system has approximately 3dB tolerance to RF sub-band power variation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Kazovsky, W. Shaw, D. Gutierrez, N. Cheng, and S. Wong, “Next-generation optical access networks,” J. Lightwave Technol.25(11), 3428–3442 (2007).
    [CrossRef]
  2. J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010).
    [CrossRef]
  3. S. Kaneko, J. Kani, K. Iwatsuki, A. Ohki, M. Sugo, and S. Kamei, “Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction,” J. Lightwave Technol.24(3), 1295–1301 (2006).
    [CrossRef]
  4. F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .
  5. H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” European Conference on Optical Communication (ECOC), (Berlin, 2007), Paper PD3.4.
  6. R. Urata, C. Lam, H. Liu, and C. Johnson, “High performance, low cost, colorless ONU for WDM-PON,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2012), Paper Nth3E.4.
  7. N. Genay, P. Chanclou, R. Brenot, M. Moignard, and F. Payoux, “Colourless ONU modules in TDM-PON and WDM-PON architectures for optical carrier remote modulation,” European Conference on Optical Communication (ECOC), (Glasgow, 2005), Paper Tu1.3.6.
    [CrossRef]
  8. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
    [CrossRef]
  9. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
    [CrossRef]
  10. X. Q. Jin and J. M. Tang, “Experimental investigations of wavelength spacing and colorlessness of RSOA-based ONUs in real-time optical OFDMA PONs,” J. Lightwave Technol.30(16), 2603–2609 (2012).
    [CrossRef]
  11. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” European Conference on Optical Communication (ECOC), (Brussels, 2008), Paper Th.3.F.1.
    [CrossRef]
  12. A. Borghesani, “Reflective based active semiconductor components for next generation optical access networks,” European Conference on Optical Communication (ECOC), (Torino, 2010), Paper Mo.1.B.1.
    [CrossRef]
  13. S. C. Lin, S. L. Lee, C. K. Liu, C. L. Yang, S. C. Ko, T. W. Liaw, and G. Keiser, “Design and demonstration of REAM-based WDM-PONs with remote amplification and channel fault monitoring,” J. Opt. Commun. Netw.4(4), 336–343 (2012).
    [CrossRef]
  14. Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
    [CrossRef]
  15. D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol.23(1), 187–195 (2005).
    [CrossRef]
  16. C. H. Lee, “WDM-PON overview,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .
  17. Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2012), Paper OW4B.3.
  18. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access network,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (San Diego, 2009), Paper OMV1.
  19. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, T. Quinlan, Y. Hong, S. Walker, and J. M. Tang, “REAM intensity modulator–enabled colorless transmission of real-time optical OFDM signals for WDM-PONs,” European Conference on Optical Communication (ECOC), (Amsterdam, 2012), Paper P6.15.
  20. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012).
    [CrossRef] [PubMed]
  21. X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J.3(3), 500–511 (2011).
    [CrossRef]
  22. M. P. Thakur, T. J. Quinlan, C. Bock, S. D. Walker, M. Toycan, S. E. M. Dudley, D. W. Smith, A. Borghesani, D. Moodie, M. Ran, and Y. Ben-Ezra, “480-Mbps, bi-directional, ultra-wideband radio-over-fiber transmission using a 1308/1564-nm reflective electro-absorption transducer and commercially available VCSELs,” J. Lightwave Technol.27(3), 266–272 (2009).
    [CrossRef]
  23. X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photon. J.3(2), 187–196 (2011).
    [CrossRef]
  24. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010).
    [CrossRef] [PubMed]
  25. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express19(4), 2979–2988 (2011).
    [CrossRef] [PubMed]
  26. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express16(25), 20427–20440 (2008).
    [CrossRef] [PubMed]
  27. E. Lach, K. Schuh, and M. Schmidt, “Application of electro-absorption modulators for high-speed transmission systems,” J. Opt. Fiber Commun. Rep.2(2), 140–170 (2005).
    [CrossRef]

2012 (4)

2011 (3)

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J.3(3), 500–511 (2011).
[CrossRef]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photon. J.3(2), 187–196 (2011).
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express19(4), 2979–2988 (2011).
[CrossRef] [PubMed]

2010 (3)

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
[CrossRef]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2006 (1)

2005 (2)

D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol.23(1), 187–195 (2005).
[CrossRef]

E. Lach, K. Schuh, and M. Schmidt, “Application of electro-absorption modulators for high-speed transmission systems,” J. Opt. Fiber Commun. Rep.2(2), 140–170 (2005).
[CrossRef]

Ben-Ezra, Y.

Bock, C.

Borghesani, A.

Brenot, R.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Chanclou, P.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Charbonnier, B.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Cheng, N.

Chi, S.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

Chow, C. W.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

Devalicourt, G.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Dudley, S. E. M.

Duong, T. N.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Genay, N.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Gharba, A.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Giacoumidis, E.

Giddings, R. P.

Guo, Q.

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
[CrossRef]

Gutierrez, D.

Hong, Y.

Hugues-Salas, E.

Hwang, S.

Iwatsuki, K.

Jin, X.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J.3(3), 500–511 (2011).
[CrossRef]

Jin, X. Q.

Jung, D. K.

Kamei, S.

Kaneko, S.

Kani, J.

J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010).
[CrossRef]

S. Kaneko, J. Kani, K. Iwatsuki, A. Ohki, M. Sugo, and S. Kamei, “Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction,” J. Lightwave Technol.24(3), 1295–1301 (2006).
[CrossRef]

Kazovsky, L. G.

Keiser, G.

Ko, S. C.

Kwon, J. W.

Lach, E.

E. Lach, K. Schuh, and M. Schmidt, “Application of electro-absorption modulators for high-speed transmission systems,” J. Opt. Fiber Commun. Rep.2(2), 140–170 (2005).
[CrossRef]

Le Masson, J.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Lee, C. H.

C. H. Lee, “WDM-PON overview,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Lee, S. L.

Liaw, T. W.

Lin, S. C.

Liu, C. K.

Moodie, D.

Oh, Y.

Ohki, A.

Ouzzif, M.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Quinlan, T.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J.3(3), 500–511 (2011).
[CrossRef]

Quinlan, T. J.

Raharimanitra, F.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Ran, M.

Saliou, F.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Schmidt, M.

E. Lach, K. Schuh, and M. Schmidt, “Application of electro-absorption modulators for high-speed transmission systems,” J. Opt. Fiber Commun. Rep.2(2), 140–170 (2005).
[CrossRef]

Schuh, K.

E. Lach, K. Schuh, and M. Schmidt, “Application of electro-absorption modulators for high-speed transmission systems,” J. Opt. Fiber Commun. Rep.2(2), 140–170 (2005).
[CrossRef]

Shaw, W.

Shih, F. Y.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

Shim, C.

Shin, D. J.

Shin, H. S.

Shu, C.

Smith, D. W.

Sugo, M.

Tang, J. M.

X. Q. Jin and J. M. Tang, “Experimental investigations of wavelength spacing and colorlessness of RSOA-based ONUs in real-time optical OFDMA PONs,” J. Lightwave Technol.30(16), 2603–2609 (2012).
[CrossRef]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012).
[CrossRef] [PubMed]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photon. J.3(2), 187–196 (2011).
[CrossRef]

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J.3(3), 500–511 (2011).
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express19(4), 2979–2988 (2011).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
[CrossRef]

X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express16(25), 20427–20440 (2008).
[CrossRef] [PubMed]

Thakur, M. P.

Toycan, M.

Tran, A. V.

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
[CrossRef]

Walker, S.

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J.3(3), 500–511 (2011).
[CrossRef]

Walker, S. D.

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

Wei, J. L.

Wong, S.

Yang, C. L.

Yeh, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

Zheng, X.

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1290–1297 (2010).
[CrossRef]

IEEE Photon. J. (2)

X. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J.3(3), 500–511 (2011).
[CrossRef]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photon. J.3(2), 187–196 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

J. Opt. Fiber Commun. Rep. (1)

E. Lach, K. Schuh, and M. Schmidt, “Application of electro-absorption modulators for high-speed transmission systems,” J. Opt. Fiber Commun. Rep.2(2), 140–170 (2005).
[CrossRef]

Opt. Express (4)

Other (10)

C. H. Lee, “WDM-PON overview,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2012), Paper OW4B.3.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access network,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (San Diego, 2009), Paper OMV1.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, T. Quinlan, Y. Hong, S. Walker, and J. M. Tang, “REAM intensity modulator–enabled colorless transmission of real-time optical OFDM signals for WDM-PONs,” European Conference on Optical Communication (ECOC), (Amsterdam, 2012), Paper P6.15.

F. Raharimanitra, P. Chanclou, T. N. Duong, J. Le Masson, B. Charbonnier, M. Ouzzif, N. Genay, A. Gharba, F. Saliou, R. Brenot, and G. Devalicourt, “Spectrum sliced sources AMOOFDM modulated for WDM&TDM PON,” European Conference on Optical Communication (ECOC), (Vienna, 2009), .

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” European Conference on Optical Communication (ECOC), (Berlin, 2007), Paper PD3.4.

R. Urata, C. Lam, H. Liu, and C. Johnson, “High performance, low cost, colorless ONU for WDM-PON,” Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2012), Paper Nth3E.4.

N. Genay, P. Chanclou, R. Brenot, M. Moignard, and F. Payoux, “Colourless ONU modules in TDM-PON and WDM-PON architectures for optical carrier remote modulation,” European Conference on Optical Communication (ECOC), (Glasgow, 2005), Paper Tu1.3.6.
[CrossRef]

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” European Conference on Optical Communication (ECOC), (Brussels, 2008), Paper Th.3.F.1.
[CrossRef]

A. Borghesani, “Reflective based active semiconductor components for next generation optical access networks,” European Conference on Optical Communication (ECOC), (Torino, 2010), Paper Mo.1.B.1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for the 19.25Gb/s real-time dual-band OOFDM REAM-based colorless transmission system.

Fig. 2
Fig. 2

a) Adaptive bit allocation profiles for the REAM-based dual-band OOFDM system and b) optical power loss of the REAM modulator as a function of reverse DC bias voltage for representative wavelengths in the C-band.

Fig. 3
Fig. 3

a) Relative transmitted and received subcarrier power and normalized system frequency responses for both sub-bands at 1550nm over 25km SSMF transmission and b) Measured baseband and passband BER performances of the 19.25Gb/s dual-band OOFDM signals for optical back-to-back configuration and 25km SSMF transmission at 1550nm.

Fig. 4
Fig. 4

Subcarrier BER distribution across all subcarriers for baseband and passband OFDM signals after transmission through 25km SSMF at a wavelength of 1550nm.

Fig. 5
Fig. 5

BER performance of the baseband (passband) with passband (baseband) being switched off for 25km SSMF at 1550nm.

Fig. 6
Fig. 6

Adaptively loaded and received subcarrier power profiles and system frequency responses of 19.25Gb/s dual-band OOFDM signals over REAM-based IMDD 25km SSMF for different wavelengths in the C-band for a) baseband and b) passband.

Fig. 7
Fig. 7

Colorless BER performance of a) 9.75Gb/s baseband and b) 9.5Gb/s passband REAM-based OOFDM signals in IMDD 25km SSMF systems.

Fig. 8
Fig. 8

Received constellations of different subcarriers before channel equalization after 25km SSMF transmission of REAM-modulated OOFDM signals for different wavelengths within the C-band: a) Baseband (BB) and b) passband (PB). SC-subcarrier

Fig. 9
Fig. 9

Measured signal line rate against sub-band power differential below the optimum value for a) passband power fixed at an optimum value and b) baseband power fixed at an optimum value.

Tables (1)

Tables Icon

Table 1 Transceiver and System Parameters

Metrics