Abstract

A numerical investigation of low-order soliton evolution in a proposed seven-cell hollow-core photonic bandgap fiber is reported. In the numerical simulation, we analyze the pulse quality evolution in soliton pulse compression and soliton self-frequency shift in three fiber structures with different cross-section sizes. In the simulation, we consider unchirped soliton pulses (of 400 fs) at the wavelength of 1060 nm. Our numerical results show that the seven-cell hollow-core photonic crystal fiber, with a cross-section size reduction of 2%, promotes the pulse quality on the soliton pulse compression and soliton self-frequency shift. For an input soliton pulse of order 3 (which corresponds to an energy of 1.69 μJ), the pulse gets compressed with a factor of up to 5.5 and a quality factor of 0.73, in a distance of 12 cm. It also experiences a soliton-self frequency shift of up to 28 nm, in a propagation length of 6 m, with a pulse shape quality of ≈ 0.80.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003).
    [CrossRef] [PubMed]
  2. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13, 6153–6159 (2005).
    [CrossRef] [PubMed]
  3. F. Gérôme, K. Cook, A. K. George, W. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express15, 7126–7131 (2007).
    [CrossRef] [PubMed]
  4. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
    [CrossRef] [PubMed]
  5. F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express12, 835–840 (2004).
    [CrossRef] [PubMed]
  6. D. V. Skryabin, “Coupled core-surface solitons in photonics crystal fibers,” Opt. Express12, 4841–4846 (2004).
    [CrossRef] [PubMed]
  7. J. C. Knight, F. Gérôme, and W. J. Wadsworth, “Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses,” IEEE J. Quantum Electron.39, 1047–1056 (2007).
    [CrossRef]
  8. J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic band gap fibers,” Opt. Express16, 9268–9644 (2008).
    [CrossRef]
  9. J. Lægsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Appl. Phys. B95, 2093–3000 (2009).
    [CrossRef]
  10. M. G. Welch, K. Cook, R. A. Correa, F. Gerome, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulses,” J. Lightwave Technol.27, 1644–1652 (2009).
    [CrossRef]
  11. A. A. Ivanov, A. A. Podshivalov, and A. M. Zheltikov, “Frequency-shifted megawatt soliton output of a hollow photonic-crystal fiber for time-resolved coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Lett.31, 3318–3320 (2006).
    [CrossRef] [PubMed]
  12. B-W. Liu, M-L. Hu, X-H. Fang, Y-F. Li, L. Chai, C-Y. Wang, W. Tong, J. Luo, A. A. Voronin, and A. M. Zheltikov, “Stabilized soliton self-frequency shift and 0.1-PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core,” Opt. Express16, 14987–14996 (2008).
    [CrossRef] [PubMed]
  13. F. Gérome, P. Dupriez, J. Clowes, J. C. Knight, and W. J Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express16, 2381–2386 (2008).
    [CrossRef] [PubMed]
  14. A. V Gorbach and D. V Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express16, 4858–4865 (2008).
    [CrossRef] [PubMed]
  15. N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
    [CrossRef]
  16. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express14, 7974–7985 (2006).
    [CrossRef] [PubMed]
  17. G. P. Agrawal, Non-Linear Fiber Optics (Academic, 2007).
  18. C. J. Hensley, D. G. Ouzounov, and A. L. Gaeta, “Silica-glass contribution to the effective non-linearity of hollow-core photonic band-gap fibers,” Opt. Express15, 3507–3512 (2007).
    [CrossRef] [PubMed]
  19. J. Lægsgaard, J. Riishede, A. Bjarklev, and N. A. Mortensen, “Material effects in air-guiding photonic band gap fibers,” J. Opt. Soc. Am. B20, 2046–2051 (2003).
    [CrossRef]
  20. N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).
  21. F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers (Springer, 2007).
  22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
    [CrossRef]
  23. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, “Optimal compression of multi-soliton pulses in optical fibers,” Sov. Tech. Phys. Lett.12, 311–313 (1986).
  24. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  25. K-T. Chai and W-H. Cao, “Enhanced compression of fundamentals solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun.184, 463–474 (2000).
    [CrossRef]

2012 (1)

N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
[CrossRef]

2009 (2)

2008 (4)

2007 (3)

2006 (3)

2005 (1)

2004 (2)

2003 (3)

J. Lægsgaard, J. Riishede, A. Bjarklev, and N. A. Mortensen, “Material effects in air-guiding photonic band gap fibers,” J. Opt. Soc. Am. B20, 2046–2051 (2003).
[CrossRef]

J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

2000 (1)

K-T. Chai and W-H. Cao, “Enhanced compression of fundamentals solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun.184, 463–474 (2000).
[CrossRef]

1986 (1)

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, “Optimal compression of multi-soliton pulses in optical fibers,” Sov. Tech. Phys. Lett.12, 311–313 (1986).

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

G. P. Agrawal, Non-Linear Fiber Optics (Academic, 2007).

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

Amezcua-Correa, R.

Arzate, N.

N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
[CrossRef]

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

Bjarklev, A.

Broderick, N. G.

Campbell, S.

Cao, W-H.

K-T. Chai and W-H. Cao, “Enhanced compression of fundamentals solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun.184, 463–474 (2000).
[CrossRef]

Ceballos-Herrera, D. E.

N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
[CrossRef]

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

Chai, K-T.

K-T. Chai and W-H. Cao, “Enhanced compression of fundamentals solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun.184, 463–474 (2000).
[CrossRef]

Chai, L.

Clowes, J.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Cook, K.

Correa, R. A.

Cucinotta, A.

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers (Springer, 2007).

Dianov, E. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, “Optimal compression of multi-soliton pulses in optical fibers,” Sov. Tech. Phys. Lett.12, 311–313 (1986).

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Dupriez, P.

Fang, X-H.

Ferrando, A.

N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
[CrossRef]

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

Gaeta, A. L.

Gallagher, M. T.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13, 6153–6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

George, A. K.

Gerome, F.

Gérome, F.

Gérôme, F.

F. Gérôme, K. Cook, A. K. George, W. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express15, 7126–7131 (2007).
[CrossRef] [PubMed]

J. C. Knight, F. Gérôme, and W. J. Wadsworth, “Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses,” IEEE J. Quantum Electron.39, 1047–1056 (2007).
[CrossRef]

González Baquedano, N.

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

González-Baquedano, N.

N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
[CrossRef]

Gorbach, A. V

Gorbach, A. V.

Hensley, C. J.

Hu, M-L.

Ivanov, A. A.

Knight, J. C.

Koch, K. W.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13, 6153–6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

Lægsgaard, J.

J. Lægsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Appl. Phys. B95, 2093–3000 (2009).
[CrossRef]

J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic band gap fibers,” Opt. Express16, 9268–9644 (2008).
[CrossRef]

J. Lægsgaard, J. Riishede, A. Bjarklev, and N. A. Mortensen, “Material effects in air-guiding photonic band gap fibers,” J. Opt. Soc. Am. B20, 2046–2051 (2003).
[CrossRef]

Li, Y-F.

Liu, B-W.

Luan, F.

Luo, J.

Mangan, B. J.

Martínez-Ríos, A.

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

Milián, C.

N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
[CrossRef]

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

Mortensen, N. A.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

Nikonova, Z. S.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, “Optimal compression of multi-soliton pulses in optical fibers,” Sov. Tech. Phys. Lett.12, 311–313 (1986).

Ouzounov, D. G.

Petrovich, M. N.

Podshivalov, A. A.

Poletti, F.

Poli, F.

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers (Springer, 2007).

Prokhorov, A. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, “Optimal compression of multi-soliton pulses in optical fibers,” Sov. Tech. Phys. Lett.12, 311–313 (1986).

Reid, D. T.

Richardson, D. J.

Riishede, J.

Roberts, P. J.

Russell, P. S. J.

Selleri, S.

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers (Springer, 2007).

Serkin, V. N.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, “Optimal compression of multi-soliton pulses in optical fibers,” Sov. Tech. Phys. Lett.12, 311–313 (1986).

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

Skryabin, D. V

Skryabin, D. V.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

Tong, W.

Torres-Gómez, I.

N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
[CrossRef]

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

Vargas, S.

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

Venkataraman, N.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13, 6153–6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

Voronin, A. A.

Wadsworth, W.

Wadsworth, W. J

Wadsworth, W. J.

M. G. Welch, K. Cook, R. A. Correa, F. Gerome, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulses,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

J. C. Knight, F. Gérôme, and W. J. Wadsworth, “Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses,” IEEE J. Quantum Electron.39, 1047–1056 (2007).
[CrossRef]

Wang, C-Y.

Welch, M. G.

Williams, D. P.

Xiao, D.

Zheltikov, A. M.

Appl. Phys. B (1)

J. Lægsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Appl. Phys. B95, 2093–3000 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. C. Knight, F. Gérôme, and W. J. Wadsworth, “Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses,” IEEE J. Quantum Electron.39, 1047–1056 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

K-T. Chai and W-H. Cao, “Enhanced compression of fundamentals solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun.184, 463–474 (2000).
[CrossRef]

Opt. Express (10)

J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic band gap fibers,” Opt. Express16, 9268–9644 (2008).
[CrossRef]

F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express12, 835–840 (2004).
[CrossRef] [PubMed]

D. V. Skryabin, “Coupled core-surface solitons in photonics crystal fibers,” Opt. Express12, 4841–4846 (2004).
[CrossRef] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13, 6153–6159 (2005).
[CrossRef] [PubMed]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express14, 7974–7985 (2006).
[CrossRef] [PubMed]

C. J. Hensley, D. G. Ouzounov, and A. L. Gaeta, “Silica-glass contribution to the effective non-linearity of hollow-core photonic band-gap fibers,” Opt. Express15, 3507–3512 (2007).
[CrossRef] [PubMed]

F. Gérôme, K. Cook, A. K. George, W. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express15, 7126–7131 (2007).
[CrossRef] [PubMed]

F. Gérome, P. Dupriez, J. Clowes, J. C. Knight, and W. J Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express16, 2381–2386 (2008).
[CrossRef] [PubMed]

A. V Gorbach and D. V Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express16, 4858–4865 (2008).
[CrossRef] [PubMed]

B-W. Liu, M-L. Hu, X-H. Fang, Y-F. Li, L. Chai, C-Y. Wang, W. Tong, J. Luo, A. A. Voronin, and A. M. Zheltikov, “Stabilized soliton self-frequency shift and 0.1-PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core,” Opt. Express16, 14987–14996 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photonics and Nanostructures – Fundamentals and Applications (1)

N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, and C. Milián, “Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section,” Photonics and Nanostructures – Fundamentals and Applications10, 594–601 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-Core photonic band-gap fibers,” Science301, 1702–1704 (2003).
[CrossRef] [PubMed]

Sov. Tech. Phys. Lett. (1)

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, “Optimal compression of multi-soliton pulses in optical fibers,” Sov. Tech. Phys. Lett.12, 311–313 (1986).

Other (4)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

G. P. Agrawal, Non-Linear Fiber Optics (Academic, 2007).

N. González Baquedano, S. Vargas, N. Arzate, I. Torres-Gómez, A. Martínez-Ríos, D. E. Ceballos-Herrera, A. Ferrando, and C. Milián, “Modeling the tapering effects on the modal parameters of a hollow-core photonic bandgap fiber,” in Eight Symposium Optics in Industry,E. Rosas, N. Arzate, I. Torres, and J. Sumaya, eds., Proc. SPIE 8287, 828701 (2011).

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross section of the modeled HC-PBGF. The colored (white) areas indicate silica (air) regions [15].

Fig. 2
Fig. 2

Second- (a) and third-order (b) dispersion parameters as a function of wavelength for the A, B and C structures.

Fig. 3
Fig. 3

Non-linear parameters contributions for the studied HC-PBGFs A structure as a function of wavelength. The total non-linear parameter, γT, is given by the sum of the contributions of the silica, γs, and of the air, γa.

Fig. 4
Fig. 4

Relative dispersion slope, RDS, as a function of wavelength, for the three studied HC-PBGFs.

Fig. 5
Fig. 5

Density plots of the temporal (a) and spectral (b) evolution of an input soliton pulse of order N = 2, along a propagation length of ten meters, in a HC-PBGF.

Fig. 6
Fig. 6

Compression factor as a function of the propagation length and of soliton number, N, for the studied HC-PBGFs: (a) A, (b) B, and (c) C.

Fig. 7
Fig. 7

Pulse quality factor as a function of propagation length and of soliton number, N, for the studied HC-PBGFs: (a) A, (b) B, and (c) C.

Fig. 8
Fig. 8

Upper panels: output compressed pulses as a function of soliton order: (a) N = 2, (b) N = 2.5 and (c) N = 3, for the C fiber structure. Lower panels: corresponding density plots of the temporal evolution of the soliton pulse.

Fig. 9
Fig. 9

Spectra of the output-pulse power in the A (a)–(c) and C fiber structures (d)–(f), upper panels. The corresponding density plots (lower panels) for the C fiber structure are also shown. N is the soliton order and Δλ is the SSFS. The propagation length is z = 10 m except for the case wherein N = 3 for the C structure, which z = 6 m.

Tables (2)

Tables Icon

Table 1 Output parameters of the optimum compressed pulse for the studied HC-PBGFs structures.

Tables Icon

Table 2 Output parameters of the soliton self-frequency shift for the studied HC-PBGFs structures. The propagation length is z = 10 m except for the case wherein N = 3 for the C structure, which z = 6 m.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

β ( ω ) = β ( ω 0 ) + β 1 ( ω 0 ) Ω + ( 1 / 2 ) β 2 ( ω 0 ) Ω 2 + ( 1 / 6 ) β 3 ( ω 0 ) Ω 3 + ,
β k ( ω 0 ) = d k β d ω k | ω 0
RDS = β 3 | β 2 | ,
γ i = 2 π n 2 i λ A eff i ,
γ T = γ a + γ s .
A z + i 2 β 2 2 A t 2 1 6 β 3 3 A t 3 = i γ a ( 1 f a ) | A | 2 A + i γ s ( 1 f s ) | A | 2 A + i γ a f a A + d t R a ( t ) | A ( t t , z ) | 2 + i γ s f s A + d t R s ( t ) | A ( t t , z ) | 2 ,
R i ( t ) = Θ ( t ) ( τ 1 ( i ) ) 2 + ( τ 2 ( i ) ) 2 τ 1 ( i ) ( τ 2 ( i ) ) 2 exp [ t / τ 2 ( i ) ] sin ( t / τ 1 ( i ) ) ,
z opt = π 2 [ 0.32 N + 1.1 N 2 ] L D ,
F C = t F W H M t comp ,
Q c = 1 E pedestal 100 ,
E pedestal = | E total E sech | E total × 100 ,
A ( t , 0 ) = P 0 sech ( t / t 0 ) ,

Metrics