Abstract

We demonstrate that one can meet numerous commercial requirements for filters used in dense wavelength-division multiplexing applications using quadruple Vernier racetrack resonators in the silicon-on-insulator platform. Experimental performance shows a ripple of 0.2 dB, an interstitial peak suppression of 39.7 dB, an adjacent channel isolation of 37.2 dB, an express channel isolation of 10.2 dB, and a free spectral range of 37.52 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun.271, 424–429 (2007).
    [CrossRef]
  2. O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Micro. Optical Tech. Lett.39, 257–261 (2003).
    [CrossRef]
  3. Y. Goebuchi, T. Kato, and Y. Kokubun, “Optimum arrangement of high-order series-coupled microring resonator for crosstalk reduction,” Jpn. J. Appl. Phys.45, 5769–5774 (2006).
    [CrossRef]
  4. D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).
  5. S. Dey and S. Mandal, “Modeling and analysis of quadruple optical ring resonator performance as optical filter using Vernier principle,” Opt. Commun.285, 439–446 (2012).
    [CrossRef]
  6. C. Chaichuay, P. P. Yupapin, and P. Saeung, “The serially coupled multiple ring resonator filters and Vernier effect,” Opt. Appl.39, 175 (2009).
  7. H. Yan, X. Feng, D. Zhang, and Y. Huang, “Integrated optical add-drop multiplexer based on a compact parent-sub microring-resonator structure,” Opt. Commun.289, 53–59 (2013).
    [CrossRef]
  8. V. M. N. Passaro, B. Troia, and F. De Leonardis, “A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sensor. Actuat. B-Chem.168, 402–420 (2012).
    [CrossRef]
  9. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng.50, 074601–0746016 (2011).
    [CrossRef]
  10. F. Boffi, L. Bolla, P. Galli, S. Ghidini, and L. Socci, “Method and device for tunable optical filtering using Vernier effect,” U.S. Patent EP2181348 B1 (2012).
  11. E. J. Klein, “Densely integrated microring-resonator based components for fiber-to-the-home applications,” Ph.D. dissertation, University of Twente (2007).
  12. S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol.13, 1766–1771 (1995).
    [CrossRef]
  13. S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005).
    [CrossRef]
  14. S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).
  15. T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, “Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators,” in 35th European Conference On Optical Communication (ECOC), 1–2 (2009).
  16. P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012).
    [CrossRef]
  17. W. Fegadolli, G. Vargas, X. Wang, F. Valini, L. Barea, J. Oliveira, N. Frateschi, A. Scherer, V. Almeida, and R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20, 14722–14733 (2012).
    [CrossRef] [PubMed]
  18. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the vernier effect: theory and measurement,” Opt. Express18, 25151–25157 (2010).
    [CrossRef] [PubMed]
  19. R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett.37, 5199–5201 (2012).
    [CrossRef] [PubMed]
  20. B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
    [CrossRef]
  21. M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
    [CrossRef]
  22. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20, 1525–1529 (2002).
    [CrossRef]
  23. Y. Goebuchi, T. Kato, and Y. Kokubun, “Expansion of tuning range of wavelength selective switch using Vernier effect of series coupled microring resonator,” in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005. LEOS 2005, 734–735 (2005).
  24. K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol.9, 728–736 (1991).
    [CrossRef]
  25. L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun.284, 156–159 (2011).
    [CrossRef]
  26. J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett.23, 842–844 (2011).
    [CrossRef]
  27. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express, 18, 22747–22761 (2010).
    [CrossRef] [PubMed]
  28. X. Jiang, “Silicon nanowire waveguide sensor based on two cascaded ring resonators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS4E.3.
  29. “Single channel DWDM (100 GHz),” Alliance Fiber Optic Products, Inc.
  30. “Optical add/drop multiplexers 100 GHz OADM (1x2),” Photonics-USA.
  31. “Fiber optic dwdm single add/drop device,” AOXC Technologies.
  32. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.
  33. D. Minoli, Telecommunications Technology Handbook (Artech House, 2003).
  34. “DWDM and CWDM three port device optical parameter definition and test requirements,” Alliance Fiber Optic Products, Inc.
  35. R. S. Romaniuk, “Optical fiber transmission with wavelength multiplexing: faster or denser?,” 5484, 19–28 (2004).
  36. R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
    [CrossRef]
  37. “High isolation OADM (100 GHz),” Alliance Fiber Optic Products, Inc.
  38. C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.
  39. P. Prabhathan, V. M. Murukeshan, and J. Zhang, “Optimal detuning combinations in a series coupled silicon micro ring resonator thermo optic-wavelength selective switch,” Opt. Eng.51, 044604 (2012).
    [CrossRef]
  40. S. J. Mason, “Feedback theory-further properties of signal flow graphs,” Proc. IRE44, 920–926 (1956).
    [CrossRef]

2013 (1)

H. Yan, X. Feng, D. Zhang, and Y. Huang, “Integrated optical add-drop multiplexer based on a compact parent-sub microring-resonator structure,” Opt. Commun.289, 53–59 (2013).
[CrossRef]

2012 (7)

V. M. N. Passaro, B. Troia, and F. De Leonardis, “A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sensor. Actuat. B-Chem.168, 402–420 (2012).
[CrossRef]

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

S. Dey and S. Mandal, “Modeling and analysis of quadruple optical ring resonator performance as optical filter using Vernier principle,” Opt. Commun.285, 439–446 (2012).
[CrossRef]

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012).
[CrossRef]

W. Fegadolli, G. Vargas, X. Wang, F. Valini, L. Barea, J. Oliveira, N. Frateschi, A. Scherer, V. Almeida, and R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20, 14722–14733 (2012).
[CrossRef] [PubMed]

R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett.37, 5199–5201 (2012).
[CrossRef] [PubMed]

P. Prabhathan, V. M. Murukeshan, and J. Zhang, “Optimal detuning combinations in a series coupled silicon micro ring resonator thermo optic-wavelength selective switch,” Opt. Eng.51, 044604 (2012).
[CrossRef]

2011 (5)

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun.284, 156–159 (2011).
[CrossRef]

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett.23, 842–844 (2011).
[CrossRef]

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng.50, 074601–0746016 (2011).
[CrossRef]

2010 (2)

2009 (2)

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

C. Chaichuay, P. P. Yupapin, and P. Saeung, “The serially coupled multiple ring resonator filters and Vernier effect,” Opt. Appl.39, 175 (2009).

2007 (1)

O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun.271, 424–429 (2007).
[CrossRef]

2006 (1)

Y. Goebuchi, T. Kato, and Y. Kokubun, “Optimum arrangement of high-order series-coupled microring resonator for crosstalk reduction,” Jpn. J. Appl. Phys.45, 5769–5774 (2006).
[CrossRef]

2005 (1)

S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005).
[CrossRef]

2004 (1)

R. S. Romaniuk, “Optical fiber transmission with wavelength multiplexing: faster or denser?,” 5484, 19–28 (2004).

2003 (1)

O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Micro. Optical Tech. Lett.39, 257–261 (2003).
[CrossRef]

2002 (1)

1995 (1)

S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol.13, 1766–1771 (1995).
[CrossRef]

1991 (1)

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol.9, 728–736 (1991).
[CrossRef]

1956 (1)

S. J. Mason, “Feedback theory-further properties of signal flow graphs,” Proc. IRE44, 920–926 (1956).
[CrossRef]

Absil, P. P.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Aida, Y.

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

Almeida, V.

Baehr-Jones, T.

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Barea, L.

Barwicz, T.

C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.

Bettotti, P.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Bienstman, P.

Boeck, R.

Boffi, F.

F. Boffi, L. Bolla, P. Galli, S. Ghidini, and L. Socci, “Method and device for tunable optical filtering using Vernier effect,” U.S. Patent EP2181348 B1 (2012).

Bogaerts, W.

Bojko, R.J.

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

Bolla, L.

F. Boffi, L. Bolla, P. Galli, S. Ghidini, and L. Socci, “Method and device for tunable optical filtering using Vernier effect,” U.S. Patent EP2181348 B1 (2012).

Cai, S.

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Cao, T.

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng.50, 074601–0746016 (2011).
[CrossRef]

Chaichuay, C.

C. Chaichuay, P. P. Yupapin, and P. Saeung, “The serially coupled multiple ring resonator filters and Vernier effect,” Opt. Appl.39, 175 (2009).

Chen, S.

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng.50, 074601–0746016 (2011).
[CrossRef]

Choi, S. J.

S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005).
[CrossRef]

Choi, S.-J.

S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005).
[CrossRef]

Chrostowski, L.

Chu, S. T.

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20, 1525–1529 (2002).
[CrossRef]

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Chu, T.

T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, “Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators,” in 35th European Conference On Optical Communication (ECOC), 1–2 (2009).

Claes, T.

Cohen, O.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

Crnjanski, J.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

Dai, D.

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett.23, 842–844 (2011).
[CrossRef]

Dapkus, P. D.

S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005).
[CrossRef]

De Leonardis, F.

V. M. N. Passaro, B. Troia, and F. De Leonardis, “A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sensor. Actuat. B-Chem.168, 402–420 (2012).
[CrossRef]

Dey, S.

S. Dey and S. Mandal, “Modeling and analysis of quadruple optical ring resonator performance as optical filter using Vernier principle,” Opt. Commun.285, 439–446 (2012).
[CrossRef]

Ding, R.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Duan, X.

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Fedeli, J.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Fegadolli, W.

Feng, X.

H. Yan, X. Feng, D. Zhang, and Y. Huang, “Integrated optical add-drop multiplexer based on a compact parent-sub microring-resonator structure,” Opt. Commun.289, 53–59 (2013).
[CrossRef]

Flueckiger, J.

Frateschi, N.

Frigyes, I.

O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Micro. Optical Tech. Lett.39, 257–261 (2003).
[CrossRef]

Fujioka, N.

T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, “Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators,” in 35th European Conference On Optical Communication (ECOC), 1–2 (2009).

Galli, P.

F. Boffi, L. Bolla, P. Galli, S. Ghidini, and L. Socci, “Method and device for tunable optical filtering using Vernier effect,” U.S. Patent EP2181348 B1 (2012).

Ghidini, S.

F. Boffi, L. Bolla, P. Galli, S. Ghidini, and L. Socci, “Method and device for tunable optical filtering using Vernier effect,” U.S. Patent EP2181348 B1 (2012).

Gill, D.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Goebuchi, Y.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Optimum arrangement of high-order series-coupled microring resonator for crosstalk reduction,” Jpn. J. Appl. Phys.45, 5769–5774 (2006).
[CrossRef]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Expansion of tuning range of wavelength selective switch using Vernier effect of series coupled microring resonator,” in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005. LEOS 2005, 734–735 (2005).

Guider, R.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Harris, N. C.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Haus, H. A.

C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.

He, J.-J.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun.284, 156–159 (2011).
[CrossRef]

He, L.

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Hibino, Y.

S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol.13, 1766–1771 (1995).
[CrossRef]

Hochberg, M.

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Hryniewicz, J. V.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Hu, J.

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett.23, 842–844 (2011).
[CrossRef]

Huang, Y.

H. Yan, X. Feng, D. Zhang, and Y. Huang, “Integrated optical add-drop multiplexer based on a compact parent-sub microring-resonator structure,” Opt. Commun.289, 53–59 (2013).
[CrossRef]

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Huijuan, Z.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012).
[CrossRef]

Ippen, E. P.

C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.

Ishizaka, M.

T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, “Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators,” in 35th European Conference On Optical Communication (ECOC), 1–2 (2009).

Jaeger, N. A. F.

Jiang, X.

X. Jiang, “Silicon nanowire waveguide sensor based on two cascaded ring resonators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS4E.3.

Jin, L.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun.284, 156–159 (2011).
[CrossRef]

Jing, Z.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012).
[CrossRef]

Johnson, F. G.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Kato, T.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Optimum arrangement of high-order series-coupled microring resonator for crosstalk reduction,” Jpn. J. Appl. Phys.45, 5769–5774 (2006).
[CrossRef]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Expansion of tuning range of wavelength selective switch using Vernier effect of series coupled microring resonator,” in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005. LEOS 2005, 734–735 (2005).

King, O.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Klein, E. J.

E. J. Klein, “Densely integrated microring-resonator based components for fiber-to-the-home applications,” Ph.D. dissertation, University of Twente (2007).

Kokubun, Y.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Optimum arrangement of high-order series-coupled microring resonator for crosstalk reduction,” Jpn. J. Appl. Phys.45, 5769–5774 (2006).
[CrossRef]

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20, 1525–1529 (2002).
[CrossRef]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Expansion of tuning range of wavelength selective switch using Vernier effect of series coupled microring resonator,” in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005. LEOS 2005, 734–735 (2005).

Li, J.

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Li, M.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun.284, 156–159 (2011).
[CrossRef]

Lim, E.-J.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Liow, T.-Y.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Little, B. E.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Lo, G.-Q.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Mancinelli, M.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Mandal, S.

S. Dey and S. Mandal, “Modeling and analysis of quadruple optical ring resonator performance as optical filter using Vernier principle,” Opt. Commun.285, 439–446 (2012).
[CrossRef]

Manolatou, C.

C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.

Mashanovich, G.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

Masi, M.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Mason, S. J.

S. J. Mason, “Feedback theory-further properties of signal flow graphs,” Proc. IRE44, 920–926 (1956).
[CrossRef]

Michaeli, A.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

Minoli, D.

D. Minoli, Telecommunications Technology Handbook (Artech House, 2003).

Murukeshan, V. M.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012).
[CrossRef]

P. Prabhathan, V. M. Murukeshan, and J. Zhang, “Optimal detuning combinations in a series coupled silicon micro ring resonator thermo optic-wavelength selective switch,” Opt. Eng.51, 044604 (2012).
[CrossRef]

Nakamura, S.

T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, “Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators,” in 35th European Conference On Optical Communication (ECOC), 1–2 (2009).

Novack, A.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Oda, K.

S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol.13, 1766–1771 (1995).
[CrossRef]

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol.9, 728–736 (1991).
[CrossRef]

Oliveira, J.

Panepucci, R.

Passaro, V. M. N.

V. M. N. Passaro, B. Troia, and F. De Leonardis, “A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sensor. Actuat. B-Chem.168, 402–420 (2012).
[CrossRef]

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

Pavesi, L.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Peng, Z.

S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005).
[CrossRef]

Pinguet, T.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Popovic, M. A.

C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.

Prabhathan, P.

P. Prabhathan, V. M. Murukeshan, and J. Zhang, “Optimal detuning combinations in a series coupled silicon micro ring resonator thermo optic-wavelength selective switch,” Opt. Eng.51, 044604 (2012).
[CrossRef]

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012).
[CrossRef]

Rakich, P. T.

C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.

Reed, G. T.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

Ren, G.

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng.50, 074601–0746016 (2011).
[CrossRef]

Ren, X.

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Romaniuk, R. S.

R. S. Romaniuk, “Optical fiber transmission with wavelength multiplexing: faster or denser?,” 5484, 19–28 (2004).

Rouger, N.

Saeung, P.

C. Chaichuay, P. P. Yupapin, and P. Saeung, “The serially coupled multiple ring resonator filters and Vernier effect,” Opt. Appl.39, 175 (2009).

Scherer, A.

Schwelb, O.

O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun.271, 424–429 (2007).
[CrossRef]

O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Micro. Optical Tech. Lett.39, 257–261 (2003).
[CrossRef]

Seiferth, F.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Shanton, J.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Shen, B.

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Shiyi, C.

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012).
[CrossRef]

Socci, L.

F. Boffi, L. Bolla, P. Galli, S. Ghidini, and L. Socci, “Method and device for tunable optical filtering using Vernier effect,” U.S. Patent EP2181348 B1 (2012).

Streshinsky, M.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Suzuki, S.

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20, 1525–1529 (2002).
[CrossRef]

S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol.13, 1766–1771 (1995).
[CrossRef]

Takato, N.

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol.9, 728–736 (1991).
[CrossRef]

Teo, H.-G.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

Thourhout, D. V.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Timotijevic, B.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

Toba, H.

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol.9, 728–736 (1991).
[CrossRef]

Tokushima, M.

T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, “Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators,” in 35th European Conference On Optical Communication (ECOC), 1–2 (2009).

Trakalo, M.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Troia, B.

V. M. N. Passaro, B. Troia, and F. De Leonardis, “A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sensor. Actuat. B-Chem.168, 402–420 (2012).
[CrossRef]

Vac., J.

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

Valini, F.

Van, V.

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

Vanacharla, M. R.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Vargas, G.

Wang, Q.

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Wang, X.

Yan, H.

H. Yan, X. Feng, D. Zhang, and Y. Huang, “Integrated optical add-drop multiplexer based on a compact parent-sub microring-resonator structure,” Opt. Commun.289, 53–59 (2013).
[CrossRef]

Yanagase, Y.

Yang, Q.

S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005).
[CrossRef]

Yun, H.

Yupapin, P. P.

C. Chaichuay, P. P. Yupapin, and P. Saeung, “The serially coupled multiple ring resonator filters and Vernier effect,” Opt. Appl.39, 175 (2009).

Zhang, D.

H. Yan, X. Feng, D. Zhang, and Y. Huang, “Integrated optical add-drop multiplexer based on a compact parent-sub microring-resonator structure,” Opt. Commun.289, 53–59 (2013).
[CrossRef]

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Zhang, J.

P. Prabhathan, V. M. Murukeshan, and J. Zhang, “Optimal detuning combinations in a series coupled silicon micro ring resonator thermo optic-wavelength selective switch,” Opt. Eng.51, 044604 (2012).
[CrossRef]

Zhang, X.

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Chinese Opt. Lett. (1)

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett.7, 291–295 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett.23, 842–844 (2011).
[CrossRef]

S.-J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier effects,” IEEE Photon. Technol. Lett.17, 106–108 (2005).
[CrossRef]

P. Prabhathan, Z. Jing, V. M. Murukeshan, Z. Huijuan, and C. Shiyi, “Discrete and fine wavelength tunable thermo-optic WSS for low power consumption C+L band tunability,” IEEE Photon. Technol. Lett.24, 152–154 (2012).
[CrossRef]

J. Lightwave Technol. (3)

S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol.13, 1766–1771 (1995).
[CrossRef]

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20, 1525–1529 (2002).
[CrossRef]

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol.9, 728–736 (1991).
[CrossRef]

J. Nanophotonics (1)

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, J. Fedeli, D. V. Thourhout, and L. Pavesi, “Optical characterization of silicon-on-insulator-based single and coupled racetrack resonators,” J. Nanophotonics5, 051705 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Goebuchi, T. Kato, and Y. Kokubun, “Optimum arrangement of high-order series-coupled microring resonator for crosstalk reduction,” Jpn. J. Appl. Phys.45, 5769–5774 (2006).
[CrossRef]

Micro. Optical Tech. Lett. (1)

O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Micro. Optical Tech. Lett.39, 257–261 (2003).
[CrossRef]

Opt. Appl. (1)

C. Chaichuay, P. P. Yupapin, and P. Saeung, “The serially coupled multiple ring resonator filters and Vernier effect,” Opt. Appl.39, 175 (2009).

Opt. Commun. (4)

H. Yan, X. Feng, D. Zhang, and Y. Huang, “Integrated optical add-drop multiplexer based on a compact parent-sub microring-resonator structure,” Opt. Commun.289, 53–59 (2013).
[CrossRef]

O. Schwelb, “The nature of spurious mode suppression in extended FSR microring multiplexers,” Opt. Commun.271, 424–429 (2007).
[CrossRef]

S. Dey and S. Mandal, “Modeling and analysis of quadruple optical ring resonator performance as optical filter using Vernier principle,” Opt. Commun.285, 439–446 (2012).
[CrossRef]

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun.284, 156–159 (2011).
[CrossRef]

Opt. Eng. (2)

G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng.50, 074601–0746016 (2011).
[CrossRef]

P. Prabhathan, V. M. Murukeshan, and J. Zhang, “Optimal detuning combinations in a series coupled silicon micro ring resonator thermo optic-wavelength selective switch,” Opt. Eng.51, 044604 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. IRE (1)

S. J. Mason, “Feedback theory-further properties of signal flow graphs,” Proc. IRE44, 920–926 (1956).
[CrossRef]

Proc. SPIE (1)

D. Zhang, Y. Huang, X. Ren, X. Duan, B. Shen, Q. Wang, X. Zhang, and S. Cai, “Add-drop filters based on asymmetric high-order microring resonators,” Proc. SPIE8555, 85550U-1–85550U-7 (2012).

Sci. Technol. B (1)

R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, and J. Vac., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Sci. Technol. B29, 06F309 (2011).
[CrossRef]

Sensor. Actuat. B-Chem. (1)

V. M. N. Passaro, B. Troia, and F. De Leonardis, “A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sensor. Actuat. B-Chem.168, 402–420 (2012).
[CrossRef]

Other (15)

F. Boffi, L. Bolla, P. Galli, S. Ghidini, and L. Socci, “Method and device for tunable optical filtering using Vernier effect,” U.S. Patent EP2181348 B1 (2012).

E. J. Klein, “Densely integrated microring-resonator based components for fiber-to-the-home applications,” Ph.D. dissertation, University of Twente (2007).

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (Optical Society of America, 2004).

T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, “Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators,” in 35th European Conference On Optical Communication (ECOC), 1–2 (2009).

“High isolation OADM (100 GHz),” Alliance Fiber Optic Products, Inc.

C. Manolatou, M. A. Popovic, P. T. Rakich, T. Barwicz, H. A. Haus, and E. P. Ippen, “Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters,” in Optical Fiber Communication Conference, 2004, paper TuD5.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Expansion of tuning range of wavelength selective switch using Vernier effect of series coupled microring resonator,” in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005. LEOS 2005, 734–735 (2005).

X. Jiang, “Silicon nanowire waveguide sensor based on two cascaded ring resonators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS4E.3.

“Single channel DWDM (100 GHz),” Alliance Fiber Optic Products, Inc.

“Optical add/drop multiplexers 100 GHz OADM (1x2),” Photonics-USA.

“Fiber optic dwdm single add/drop device,” AOXC Technologies.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

D. Minoli, Telecommunications Technology Handbook (Artech House, 2003).

“DWDM and CWDM three port device optical parameter definition and test requirements,” Alliance Fiber Optic Products, Inc.

R. S. Romaniuk, “Optical fiber transmission with wavelength multiplexing: faster or denser?,” 5484, 19–28 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of our quadruple series-coupled racetrack resonators exhibiting the Vernier effect.

Fig. 2
Fig. 2

(a) theoretical spectral response. (b) a “zoom-in” of the major resonance.

Fig. 3
Fig. 3

(a) measured through port and drop port spectral response. (b) zoom-in of the measured major resonance. (c) zoom-in of the measured through port passband to the left of the major peak. (d) zoom-in of the measured through port passband to the right of the major peak. (e) zoom-in of the theoretical notch splitting when the effective index of racetrack resonator a decreases and (f) zoom-out of Fig. 3(e) (showing the increase in notch depth as the effective index of racetrack resonator a decreases).

Tables (2)

Tables Icon

Table 1 Theoretical and Target Specifications

Tables Icon

Table 2 Experimental and Target Specifications

Equations (48)

Equations on this page are rendered with MathJax. Learn more.

P 11 = t 1 t 2 X a ,
P 21 = t 2 t 3 X b ,
P 31 = t 3 t 4 X c ,
P 41 = t 4 t 5 X d ,
P 51 = κ 2 2 κ 3 2 t 1 t 4 X a X b X c ,
P 61 = κ 3 2 κ 4 2 t 2 t 5 X b X c X d ,
P 71 = κ 3 2 t 2 t 4 X b X c ,
P 81 = κ 4 2 t 3 t 5 X c X d ,
P 91 = κ 2 2 κ 3 2 κ 4 2 t 1 t 5 X a X b X c X d ,
P 101 = κ 2 2 t 1 t 3 X a X b
P 12 = P 11 P 21 ,
P 22 = P 21 P 31 ,
P 32 = P 31 P 41 ,
P 42 = P 11 P 31 ,
P 52 = P 11 P 41 ,
P 62 = P 21 P 41 ,
P 72 = P 41 P 51 ,
P 82 = P 11 P 71 ,
P 92 = P 41 P 71 ,
P 102 = P 81 P 101 ,
P 112 = P 31 P 101 ,
P 122 = P 41 P 101 ,
P 132 = P 11 P 81 ,
P 142 = P 21 P 81 ,
P 152 = P 11 P 61 .
P 13 = P 11 P 21 P 31 ,
P 23 = P 21 P 31 P 41 ,
P 33 = P 31 P 41 P 101 ,
P 43 = P 11 P 41 P 71 ,
P 53 = P 11 P 21 P 81 ,
P 63 = P 11 P 21 P 41 ,
P 73 = P 11 P 31 P 41 .
P 14 = P 11 P 21 P 31 P 41 .
G 1 = i κ 1 κ 2 κ 3 κ 4 κ 5 X a X b X c X d ,
Δ 1 = 1 .
Δ = 1 ( P 11 + P 21 + P 31 + P 41 + P 51 + P 61 + P 71 + P 81 + P 91 + P 101 ) + ( P 12 + P 22 + P 32 + P 42 + P 52 + P 62 + P 72 + P 82 + P 92 + P 102 + P 112 + P 122 + P 132 + P 142 + P 152 ) ( P 13 + P 23 + P 33 + P 43 + P 53 + P 63 + P 73 ) P 14 .
G drop = G 1 Δ 1 Δ .
G 2 = t 1 ,
G 3 = κ 1 2 t 2 X a ,
G 4 = κ 1 2 κ 2 2 t 3 X a X b ,
G 5 = κ 1 2 κ 2 2 κ 3 2 t 4 X a X b X c ,
G 6 = κ 1 2 κ 2 2 κ 3 2 κ 4 2 t 5 X a X b X c X d ,
Δ 2 = Δ ,
Δ 3 = 1 ( P 21 + P 31 + P 41 + P 61 + P 71 + P 81 ) + ( P 22 + P 32 + P 62 + P 92 + P 142 ) P 23 ,
Δ 4 = 1 ( P 31 + P 41 + P 81 ) + P 32 ,
Δ 5 = 1 P 41 ,
Δ 6 = 1 .
G through = G 2 Δ 2 + G 3 Δ 3 + G 4 Δ 4 + G 5 Δ 5 + G 6 Δ 6 Δ .

Metrics