Abstract

Herein we characterize and experimentally demonstrate a new type of a horizontal slot waveguide structure for remarkably enhanced Raman scattering detection in nanometer-scale void channels. As the measurement sensitivity is one of the key limiting factors in nanofluidic detection, it is essential to search advanced solutions for such detection. Combining an all dielectric resonance waveguide grating and a surface enhanced Raman scattering (SERS) substrate in a close proximity it is possible to create high electromagnetic field energy hot zones within an adjustable slot region. This results in a strong enhancement in Raman scattering. We show the theoretical principles and demonstrate, with rhodamine 6G molecules, an approximately 20-fold enhancement compared to a conventional SERS substrate within the corresponding slot arrangement. We foresee potential applications for the proposed approach in the fields of medical, biological and chemical sensing, where the high detection sensitivity is essential due to integration with nanofluidic devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Prospects of nanotechnology in clinical immunodiagnostics.” Sensors 10, 6535–658 (2010).
    [CrossRef] [PubMed]
  2. M. M. Bellah and S. M. C. S. M. Iqbal, “Nanostrutures for medical diagnostics.” J. Nanomater 2012, 486301 (2012).
    [CrossRef]
  3. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics.” Nature 33, 381–386 (2006).
    [CrossRef]
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
    [CrossRef]
  5. D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.” Small 8, 2787–2801 (2012).
    [CrossRef] [PubMed]
  6. Z. Q. Tian, “Surface-enhanced raman spectroscopy: advancements and applications.” J. Raman Spectrosc. 36, 466–470 (2005).
    [CrossRef]
  7. M. Moskovits, “Surface-enhanced raman spectroscopy: a brief retrospective.” J. Raman Spectrosc. 36, 485–496 (2005).
    [CrossRef]
  8. M. Moskovits, “Surface-enhanced spectroscopy.” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  9. A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced raman scattering.” J. Raman Spectrosc. 36, 497–509 (2005).
    [CrossRef]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering.” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  11. C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
    [CrossRef] [PubMed]
  12. M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007).
    [CrossRef] [PubMed]
  13. M. Huang, A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors.” Opt. Express 17, 24224–24233 (2009).
    [CrossRef]
  14. P. Karvinen, T. Nuutinen, J. Rahomäki, O. Hyvärinen, and P. Vahimaa, “Strong fluorescence-signal gain with single-excitation-enhancing and emission-directing nanostructured diffraction grating.” Opt. Lett. 34, 3208–3210 (2009).
    [CrossRef] [PubMed]
  15. T. Nuutinen, P. Karvinen, J. Rahomäki, and P. Vahimaa, “Resonant waveguide grating (rwg): Overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescent measurements.” Anal. Method. 5, 281–284 (2013).
    [CrossRef]
  16. P. Päivänranta, Nanostructured surfaces for photonic and biophotonic applications (Joensuu University, 2009).
  17. L. Mashev and E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
    [CrossRef]
  18. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings.” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [CrossRef]
  19. R. Magnusson and S. S. Wang, “New principles for optical filters.” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  20. D. Rosenblatt, A. Sharon, and A. A. Friesem, “ Resonant grating waveguide structures.” IEEE J. of Quantum Elect. 33, 2038–2059 (1997).
    [CrossRef]
  21. A. Sato, N. Iwai, and M. Sato, “Large incident angle tolerance of guided-mode resonant gratings by light coupling via waveguide end face.” J. Opt. Soc. Am. A 27, 1671–1678 (2010).
    [CrossRef]
  22. S. S. Wang and R. Magnusson, “Design of wave-guide-grating filters with symmetrical line-shapes and low side-band.” Opt. Lett. 19, 919–921 (1994).
    [CrossRef] [PubMed]
  23. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998).
    [CrossRef]
  24. Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006).
    [CrossRef] [PubMed]
  25. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004).
    [CrossRef] [PubMed]
  26. A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010).
    [CrossRef]
  27. V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure.” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef] [PubMed]
  28. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (Tailor & Francis Group, 2012).
  29. M. R. Saleem, P. Stenberg, T. Alasaarela, P. Silfsten, M. B. Khan, S. Honkanen, and J. Turunen, “Towards athermal organic-inorganic guided mode resonance filters.” Opt. Express 19, 24241–24251 (2011).
    [CrossRef] [PubMed]
  30. Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
    [CrossRef]
  31. Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, and S. Honkanen, “Ag nanoparticles embedded in glass by two-step ion exchange and their sers application.” Opt. Mater. Express 1, 164–172 (2011).
    [CrossRef]

2013

T. Nuutinen, P. Karvinen, J. Rahomäki, and P. Vahimaa, “Resonant waveguide grating (rwg): Overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescent measurements.” Anal. Method. 5, 281–284 (2013).
[CrossRef]

2012

M. M. Bellah and S. M. C. S. M. Iqbal, “Nanostrutures for medical diagnostics.” J. Nanomater 2012, 486301 (2012).
[CrossRef]

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.” Small 8, 2787–2801 (2012).
[CrossRef] [PubMed]

2011

2010

A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010).
[CrossRef]

A. Sato, N. Iwai, and M. Sato, “Large incident angle tolerance of guided-mode resonant gratings by light coupling via waveguide end face.” J. Opt. Soc. Am. A 27, 1671–1678 (2010).
[CrossRef]

A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Prospects of nanotechnology in clinical immunodiagnostics.” Sensors 10, 6535–658 (2010).
[CrossRef] [PubMed]

2009

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
[CrossRef]

M. Huang, A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors.” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

P. Karvinen, T. Nuutinen, J. Rahomäki, O. Hyvärinen, and P. Vahimaa, “Strong fluorescence-signal gain with single-excitation-enhancing and emission-directing nanostructured diffraction grating.” Opt. Lett. 34, 3208–3210 (2009).
[CrossRef] [PubMed]

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

2007

M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007).
[CrossRef] [PubMed]

2006

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics.” Nature 33, 381–386 (2006).
[CrossRef]

Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006).
[CrossRef] [PubMed]

2005

Z. Q. Tian, “Surface-enhanced raman spectroscopy: advancements and applications.” J. Raman Spectrosc. 36, 466–470 (2005).
[CrossRef]

M. Moskovits, “Surface-enhanced raman spectroscopy: a brief retrospective.” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced raman scattering.” J. Raman Spectrosc. 36, 497–509 (2005).
[CrossRef]

2004

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004).
[CrossRef] [PubMed]

V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure.” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef] [PubMed]

2002

Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
[CrossRef]

1998

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998).
[CrossRef]

1997

D. Rosenblatt, A. Sharon, and A. A. Friesem, “ Resonant grating waveguide structures.” IEEE J. of Quantum Elect. 33, 2038–2059 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering.” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

1994

S. S. Wang and R. Magnusson, “Design of wave-guide-grating filters with symmetrical line-shapes and low side-band.” Opt. Lett. 19, 919–921 (1994).
[CrossRef] [PubMed]

1992

R. Magnusson and S. S. Wang, “New principles for optical filters.” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

1990

1985

M. Moskovits, “Surface-enhanced spectroscopy.” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1984

L. Mashev and E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
[CrossRef]

Alasaarela, T.

Aldwayyan, A. S.

A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Prospects of nanotechnology in clinical immunodiagnostics.” Sensors 10, 6535–658 (2010).
[CrossRef] [PubMed]

Alhoshan, M.

A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Prospects of nanotechnology in clinical immunodiagnostics.” Sensors 10, 6535–658 (2010).
[CrossRef] [PubMed]

Almeida, V.

V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure.” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef] [PubMed]

Alsalhi, M. S.

A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Prospects of nanotechnology in clinical immunodiagnostics.” Sensors 10, 6535–658 (2010).
[CrossRef] [PubMed]

Altug, H.

Ansari, A. A.

A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Prospects of nanotechnology in clinical immunodiagnostics.” Sensors 10, 6535–658 (2010).
[CrossRef] [PubMed]

Bagby, J. S.

Balakrishnan, J.

Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006).
[CrossRef] [PubMed]

Barrios, C. A.

V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure.” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef] [PubMed]

Bellah, M. M.

M. M. Bellah and S. M. C. S. M. Iqbal, “Nanostrutures for medical diagnostics.” J. Nanomater 2012, 486301 (2012).
[CrossRef]

Borghs, G.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Chang, T.-Y.

Chen, C.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Chen, Y.

Chou, I. H.

M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007).
[CrossRef] [PubMed]

Cote, G. L.

M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007).
[CrossRef] [PubMed]

De Vlaminck, I.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering.” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
[CrossRef]

Fang, Y.

Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006).
[CrossRef] [PubMed]

Ferrie, A.

Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006).
[CrossRef] [PubMed]

Fontaine, N. H.

Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006).
[CrossRef] [PubMed]

Friesem, A. A.

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004).
[CrossRef] [PubMed]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “ Resonant grating waveguide structures.” IEEE J. of Quantum Elect. 33, 2038–2059 (1997).
[CrossRef]

Gates, B.

Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
[CrossRef]

Genty, G.

A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010).
[CrossRef]

Hofkens, J.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Honkanen, S.

Hou, S.

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.” Small 8, 2787–2801 (2012).
[CrossRef] [PubMed]

Huang, M.

Hutchison, J. A.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Hyvärinen, O.

Iqbal, S. M. C. S. M.

M. M. Bellah and S. M. C. S. M. Iqbal, “Nanostrutures for medical diagnostics.” J. Nanomater 2012, 486301 (2012).
[CrossRef]

Iwai, N.

Jing, N.

M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007).
[CrossRef] [PubMed]

Kameoka, J.

M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007).
[CrossRef] [PubMed]

Karvinen, M. S. P.

A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010).
[CrossRef]

Karvinen, P.

T. Nuutinen, P. Karvinen, J. Rahomäki, and P. Vahimaa, “Resonant waveguide grating (rwg): Overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescent measurements.” Anal. Method. 5, 281–284 (2013).
[CrossRef]

P. Karvinen, T. Nuutinen, J. Rahomäki, O. Hyvärinen, and P. Vahimaa, “Strong fluorescence-signal gain with single-excitation-enhancing and emission-directing nanostructured diffraction grating.” Opt. Lett. 34, 3208–3210 (2009).
[CrossRef] [PubMed]

Karvonen, L.

Katchalski, T.

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004).
[CrossRef] [PubMed]

Kauranen, M.

A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010).
[CrossRef]

Khan, M. B.

Kim, H.

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (Tailor & Francis Group, 2012).

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
[CrossRef]

Kox, R.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Kuittinen, M.

A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010).
[CrossRef]

Lagae, L.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Lee, B.

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (Tailor & Francis Group, 2012).

Li, Z.-Y.

Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
[CrossRef]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
[CrossRef]

V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure.” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef] [PubMed]

Liu, Z. S.

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998).
[CrossRef]

Maes, G.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Magnusson, R.

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998).
[CrossRef]

S. S. Wang and R. Magnusson, “Design of wave-guide-grating filters with symmetrical line-shapes and low side-band.” Opt. Lett. 19, 919–921 (1994).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principles for optical filters.” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings.” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
[CrossRef]

Marowsky, G.

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004).
[CrossRef] [PubMed]

Mashev, L.

L. Mashev and E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
[CrossRef]

Mauro, J.

Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006).
[CrossRef] [PubMed]

Moharam, M. G.

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced raman spectroscopy: a brief retrospective.” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

M. Moskovits, “Surface-enhanced spectroscopy.” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering.” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Nuutinen, T.

T. Nuutinen, P. Karvinen, J. Rahomäki, and P. Vahimaa, “Resonant waveguide grating (rwg): Overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescent measurements.” Anal. Method. 5, 281–284 (2013).
[CrossRef]

P. Karvinen, T. Nuutinen, J. Rahomäki, O. Hyvärinen, and P. Vahimaa, “Strong fluorescence-signal gain with single-excitation-enhancing and emission-directing nanostructured diffraction grating.” Opt. Lett. 34, 3208–3210 (2009).
[CrossRef] [PubMed]

Otto, A.

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced raman scattering.” J. Raman Spectrosc. 36, 497–509 (2005).
[CrossRef]

Päivänranta, P.

P. Päivänranta, Nanostructured surfaces for photonic and biophotonic applications (Joensuu University, 2009).

Park, J.

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (Tailor & Francis Group, 2012).

Popov, E.

L. Mashev and E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics.” Nature 33, 381–386 (2006).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics.” Nature 33, 381–386 (2006).
[CrossRef]

Rahomäki, J.

T. Nuutinen, P. Karvinen, J. Rahomäki, and P. Vahimaa, “Resonant waveguide grating (rwg): Overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescent measurements.” Anal. Method. 5, 281–284 (2013).
[CrossRef]

P. Karvinen, T. Nuutinen, J. Rahomäki, O. Hyvärinen, and P. Vahimaa, “Strong fluorescence-signal gain with single-excitation-enhancing and emission-directing nanostructured diffraction grating.” Opt. Lett. 34, 3208–3210 (2009).
[CrossRef] [PubMed]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “ Resonant grating waveguide structures.” IEEE J. of Quantum Elect. 33, 2038–2059 (1997).
[CrossRef]

Saari, A.

A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010).
[CrossRef]

Saleem, M. R.

Sato, A.

Sato, M.

Säynätjoki, A.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “ Resonant grating waveguide structures.” IEEE J. of Quantum Elect. 33, 2038–2059 (1997).
[CrossRef]

Shin, D.

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998).
[CrossRef]

Silfsten, P.

Soria, S.

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004).
[CrossRef] [PubMed]

Stenberg, P.

Teitelbaum, E.

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004).
[CrossRef] [PubMed]

Tervonen, A.

Tian, Z. Q.

Z. Q. Tian, “Surface-enhanced raman spectroscopy: advancements and applications.” J. Raman Spectrosc. 36, 466–470 (2005).
[CrossRef]

Tibuleac, S.

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998).
[CrossRef]

Turunen, J.

Uji-i, H.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Vahimaa, P.

T. Nuutinen, P. Karvinen, J. Rahomäki, and P. Vahimaa, “Resonant waveguide grating (rwg): Overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescent measurements.” Anal. Method. 5, 281–284 (2013).
[CrossRef]

A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010).
[CrossRef]

P. Karvinen, T. Nuutinen, J. Rahomäki, O. Hyvärinen, and P. Vahimaa, “Strong fluorescence-signal gain with single-excitation-enhancing and emission-directing nanostructured diffraction grating.” Opt. Lett. 34, 3208–3210 (2009).
[CrossRef] [PubMed]

Van Dorpe, P.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

Venkateswaran, S.

Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
[CrossRef]

Wang, M.

M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007).
[CrossRef] [PubMed]

Wang, S. S.

S. S. Wang and R. Magnusson, “Design of wave-guide-grating filters with symmetrical line-shapes and low side-band.” Opt. Lett. 19, 919–921 (1994).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principles for optical filters.” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings.” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
[CrossRef]

Xia, D.

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.” Small 8, 2787–2801 (2012).
[CrossRef] [PubMed]

Xia, Y.

Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
[CrossRef]

Xu, Q.

V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure.” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef] [PubMed]

Yan, J.

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.” Small 8, 2787–2801 (2012).
[CrossRef] [PubMed]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics.” Nature 33, 381–386 (2006).
[CrossRef]

Yanik, A.

Ye, C.

Yin, Y.

Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
[CrossRef]

Young, P. P.

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998).
[CrossRef]

Zhong, Z.

Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
[CrossRef]

Anal. Method

T. Nuutinen, P. Karvinen, J. Rahomäki, and P. Vahimaa, “Resonant waveguide grating (rwg): Overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescent measurements.” Anal. Method. 5, 281–284 (2013).
[CrossRef]

Appl. Phys. Lett

R. Magnusson and S. S. Wang, “New principles for optical filters.” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Biophysical Journal

Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006).
[CrossRef] [PubMed]

IEEE J. of Quantum Elect

D. Rosenblatt, A. Sharon, and A. A. Friesem, “ Resonant grating waveguide structures.” IEEE J. of Quantum Elect. 33, 2038–2059 (1997).
[CrossRef]

J. Mater. Chem

Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002).
[CrossRef]

J. Nanomater

M. M. Bellah and S. M. C. S. M. Iqbal, “Nanostrutures for medical diagnostics.” J. Nanomater 2012, 486301 (2012).
[CrossRef]

J. Opt. Soc. Am. A

J. Raman Spectrosc

Z. Q. Tian, “Surface-enhanced raman spectroscopy: advancements and applications.” J. Raman Spectrosc. 36, 466–470 (2005).
[CrossRef]

M. Moskovits, “Surface-enhanced raman spectroscopy: a brief retrospective.” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

J. Raman Spectrosc.

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced raman scattering.” J. Raman Spectrosc. 36, 497–509 (2005).
[CrossRef]

Lab Chip

M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007).
[CrossRef] [PubMed]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics.” Nature 33, 381–386 (2006).
[CrossRef]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009).
[CrossRef]

Opt. Commun.

L. Mashev and E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
[CrossRef]

Opt. Express

Opt. Lett

S. S. Wang and R. Magnusson, “Design of wave-guide-grating filters with symmetrical line-shapes and low side-band.” Opt. Lett. 19, 919–921 (1994).
[CrossRef] [PubMed]

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998).
[CrossRef]

V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure.” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef] [PubMed]

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater. Express

Rev. Mod. Phys.

M. Moskovits, “Surface-enhanced spectroscopy.” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering.” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Sensors

A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Prospects of nanotechnology in clinical immunodiagnostics.” Sensors 10, 6535–658 (2010).
[CrossRef] [PubMed]

Small

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009).
[CrossRef] [PubMed]

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.” Small 8, 2787–2801 (2012).
[CrossRef] [PubMed]

Other

P. Päivänranta, Nanostructured surfaces for photonic and biophotonic applications (Joensuu University, 2009).

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (Tailor & Francis Group, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) An illustration of the measurement concept. (b) Reflection efficiencies of excitation light as a function of conical angles θ and φ. The circle defines the illumination angles through a 0.45 NA objective. (c) The close up of the resonance waveguide grating (RWG) shows the structure parameters within a single period d. The gap distance hg defines the channel width between the surface enhanced Raman scattering (SERS) substrate and the RWG. The RWG profile itself is defined by the polymer modulation depth hm, the high index layer thickness ht and the fill factor ff.

Fig. 2
Fig. 2

The calculated time average electric energy densities; (a) The RWG on a SiO2 substrate, (b) the planar Ag-film only on a SiO2 substrate, and (c) the combined RWG-Ag-slot channel. Dashed lines are plotted in (d), black corresponding to (a), red to (b), and blue to (c). The scaling ratio ω/ω0 gives the electric energy density ω relative to the maximum of the incident field ω0.

Fig. 3
Fig. 3

The time average electric energy densities after the silver film modulation; (a) the featured silver film and (b) the combined RWG-Ag-slot. The mode shape along the z-axis are plotted at x = 130 nm (dashed lines) and x = 177 nm (solid lines), respectively in (c) and (d). The scaling ratio ω/ω0 gives the electric energy density ω relative to the maximum of the incident field ω0.

Fig. 4
Fig. 4

Scanning electron microscope (SEM) images of the structures; (a) The SEM image of the SERS substrate and (b) the cross-sectional SEM image of the RWG.

Fig. 5
Fig. 5

The measured Raman signal of rhodamine 6G from the reduced silver substrate (top red), the silver nanoparticles (middle blue), and the planar glass surface (bottom black).

Fig. 6
Fig. 6

The measured Raman signal of Rhodamine 6G from the RWG-SERS-slot channel (top purple), the SERS-polymer-TiO2-channel (middle red), and the RWG-glass-channel (bottom black). The measurement geometries are illustrated respectively.

Metrics