Abstract

Abstract: The objectives of this study are to validate the applicability of a three-band algorithm in determining chlorophyll-a in eutrophic coastal waters, and to improve the model using improved three-band algorithm. Evaluated using two independent data sets collected from the West Florida Shelf, the variation three-band model was found to have a superior performance to both the three-band and modified three-band model. Using the variation three-band algorithm decreased 18% and 56% uncertainty, respectively, from the three-band and modified three-band algorithms. The significantly reduced uncertainty in chlorophyll-a estimations is attributed to effective removal of absorption of gelbstoff and suspended solids and backscattering of water molecules.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Richard, J. Could, and A. A. Robert, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ.61(2), 290–301 (1997).
    [CrossRef]
  2. N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
    [CrossRef]
  3. M. W. Matthews, “A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters,” Int. J. Remote Sens.32(21), 6855–6899 (2011).
    [CrossRef]
  4. J. Chen and H. Sheng, “An empirical algorithm for hyperspectral remote sensing of chlorophyll-a in turbid waters: a case study on Hyperion sensor,” IEEE Sensor Lett., doi. (2012).
    [CrossRef]
  5. Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ.89(3), 361–368 (2004).
    [CrossRef]
  6. J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
    [CrossRef] [PubMed]
  7. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt.41(27), 5755–5772 (2002).
    [CrossRef] [PubMed]
  8. A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
    [CrossRef]
  9. G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
    [CrossRef]
  10. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results,” Appl. Opt.45(15), 3577–3592 (2006).
    [CrossRef] [PubMed]
  11. J. Chen, X. F. Hu, and W. T. Quan, “A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China,” Water Environ. Res. (2012).
    [CrossRef]
  12. J. Chen, W. T. Quan, Z. H. Wen, and T. W. Cui, “An improved three-band semi-analytical algorithm in estimating chlorophyll-a concentration in high turbid Yellow River Estuary, ” Environ. Earth SCI. doi. (2013).
    [CrossRef]
  13. C. E. Binging, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ.112(4), 1702–1711 (2008).
    [CrossRef]
  14. Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009).
    [CrossRef]
  15. D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
    [CrossRef]
  16. V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
    [CrossRef]
  17. P. J. Werdell and S. W. Bailey, The SeaWiFS bio-optical archive and storage system (SeaBASS): current architecture and implementation, Goddard Space Flight Center, Greenbelt, Maryland 20771 (2002).
  18. M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
    [CrossRef]
  19. J. L. Mueller and G. S. Fargion, Ocean optics protocols for satellite ocean color sensor validation, SeaWiFS Technical Report Series, Revision 3 Part II (2002).
  20. L. Gilpin and P. Tett, A methods for analysis of Benthic chlorophyll-a pigment, in: marine biology report (Napier University Press, 2001).
  21. N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr.39(8), 1985–1992 (1994).
    [CrossRef]
  22. S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurement of aquatic particles retained on filters,” Limnol. Oceanogr.40(8), 1358–1368 (1995).
    [CrossRef]
  23. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt.43(25), 4957–4964 (2004).
    [CrossRef] [PubMed]
  24. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
    [CrossRef]
  25. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35(24), 4850–4862 (1996).
    [CrossRef] [PubMed]
  26. C. D. Mobley, Hydrolight 6.0 user's guide, final report, SRI international, Menlo Park, Calif (2012).
  27. A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
    [CrossRef]
  28. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS ocean science team agorithm theoretical basis document: case 2 chlorophyll a, ATBD 19, version 7 (2003).
  29. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005).
    [CrossRef] [PubMed]
  30. G. Dall'Olmo, A. A. Gitelson, and D. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett.30(18), 1–4 (2003).
    [CrossRef]
  31. H. R. Gordon, “Radiometric considerations for ocean color remote sensors,” Appl. Opt.29(22), 3228–3236 (1990).
    [CrossRef] [PubMed]
  32. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. deriving bottom depths and water properties by optimization,” Appl. Opt.38(18), 3831–3843 (1999).
    [CrossRef] [PubMed]
  33. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  34. M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).
  35. A. Morel and H. Loisel, “Apparent optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt.37(21), 4765–4776 (1998).
    [CrossRef] [PubMed]
  36. D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ.81(1), 149–161 (2002).
    [CrossRef]
  37. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semi-analytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt.45(31), 8116–8131 (2006).
    [CrossRef] [PubMed]
  38. T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ.113(11), 2424–2430 (2009).
    [CrossRef]
  39. F. Gilbes, C. Tomas, J. J. Walsh, and F. E. Muller-Karger, “An episodic chlorophyll plume on the west florida shelf,” Cont. Shelf Res.16(9), 1201–1224 (1996).
    [CrossRef]
  40. A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ.109(4), 464–472 (2007).
    [CrossRef]
  41. D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
    [CrossRef]
  42. H. R. Gordon and B. A. Franz, “Remote sensing fo ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ.112(5), 2677–2685 (2008).
    [CrossRef]
  43. R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
    [CrossRef]
  44. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt.41(6), 1035–1050 (2002).
    [CrossRef] [PubMed]
  45. J. L. Mueller, C. O. Davis, R. A. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and C. R. McClain, “Above-water radiance and remote sensing measurement and analysis protocols,” Ocean Optics Protocols for Satellite Ocean-Color Sensor Validation, vol. Revision 4, III: Radiometric Measurements and Data Analysis Protocols, pp. NASA Tech. Memo (2003).
  46. L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012).
    [CrossRef] [PubMed]
  47. W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012).
    [CrossRef]
  48. K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998).
    [CrossRef]

2013 (1)

J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

2012 (3)

J. Chen, X. F. Hu, and W. T. Quan, “A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China,” Water Environ. Res. (2012).
[CrossRef]

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012).
[CrossRef] [PubMed]

W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012).
[CrossRef]

2011 (2)

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

M. W. Matthews, “A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters,” Int. J. Remote Sens.32(21), 6855–6899 (2011).
[CrossRef]

2009 (5)

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009).
[CrossRef]

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ.113(11), 2424–2430 (2009).
[CrossRef]

2008 (3)

H. R. Gordon and B. A. Franz, “Remote sensing fo ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ.112(5), 2677–2685 (2008).
[CrossRef]

C. E. Binging, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ.112(4), 1702–1711 (2008).
[CrossRef]

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

2007 (1)

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ.109(4), 464–472 (2007).
[CrossRef]

2006 (4)

D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
[CrossRef]

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results,” Appl. Opt.45(15), 3577–3592 (2006).
[CrossRef] [PubMed]

T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semi-analytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt.45(31), 8116–8131 (2006).
[CrossRef] [PubMed]

2005 (2)

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005).
[CrossRef] [PubMed]

G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
[CrossRef]

2004 (2)

Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ.89(3), 361–368 (2004).
[CrossRef]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt.43(25), 4957–4964 (2004).
[CrossRef] [PubMed]

2003 (1)

G. Dall'Olmo, A. A. Gitelson, and D. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett.30(18), 1–4 (2003).
[CrossRef]

2002 (3)

1999 (1)

1998 (2)

A. Morel and H. Loisel, “Apparent optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt.37(21), 4765–4776 (1998).
[CrossRef] [PubMed]

K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998).
[CrossRef]

1997 (1)

W. Richard, J. Could, and A. A. Robert, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ.61(2), 290–301 (1997).
[CrossRef]

1996 (2)

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35(24), 4850–4862 (1996).
[CrossRef] [PubMed]

F. Gilbes, C. Tomas, J. J. Walsh, and F. E. Muller-Karger, “An episodic chlorophyll plume on the west florida shelf,” Cont. Shelf Res.16(9), 1201–1224 (1996).
[CrossRef]

1995 (1)

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurement of aquatic particles retained on filters,” Limnol. Oceanogr.40(8), 1358–1368 (1995).
[CrossRef]

1994 (1)

N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr.39(8), 1985–1992 (1994).
[CrossRef]

1990 (1)

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

1978 (1)

R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
[CrossRef]

1977 (1)

A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

Ahmad, Z.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

Aiken, J.

Arnone, R. A.

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
[CrossRef]

Barrow, T.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
[CrossRef]

Berdnikov, S.

W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012).
[CrossRef]

Binging, C. E.

C. E. Binging, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ.112(4), 1702–1711 (2008).
[CrossRef]

Booty, W. G.

C. E. Binging, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ.112(4), 1702–1711 (2008).
[CrossRef]

Boss, E.

Bowers, D. G.

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

Braithwaite, K. M.

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Bukata, R. P.

C. E. Binging, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ.112(4), 1702–1711 (2008).
[CrossRef]

Campbell, J. W.

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ.113(11), 2424–2430 (2009).
[CrossRef]

Carder, K. L.

Castaing, P.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Chen, J.

J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

J. Chen, X. F. Hu, and W. T. Quan, “A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China,” Water Environ. Res. (2012).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Costa, M. P. F.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

Could, J.

W. Richard, J. Could, and A. A. Robert, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ.61(2), 290–301 (1997).
[CrossRef]

Dall’Olmo, G.

Dall'Olmo, G.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
[CrossRef]

G. Dall'Olmo, A. A. Gitelson, and D. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett.30(18), 1–4 (2003).
[CrossRef]

Dowell, M. D.

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ.113(11), 2424–2430 (2009).
[CrossRef]

Doxaran, D.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Du, K. P.

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Ferrari, G. M.

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurement of aquatic particles retained on filters,” Limnol. Oceanogr.40(8), 1358–1368 (1995).
[CrossRef]

Fisher, T. R.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Franz, B. A.

H. R. Gordon and B. A. Franz, “Remote sensing fo ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ.112(5), 2677–2685 (2008).
[CrossRef]

Froidefond, J.-M.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Fukushima, T.

Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009).
[CrossRef]

Gallegos, C. L.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

Gentili, B.

Gilbes, F.

F. Gilbes, C. Tomas, J. J. Walsh, and F. E. Muller-Karger, “An episodic chlorophyll plume on the west florida shelf,” Cont. Shelf Res.16(9), 1201–1224 (1996).
[CrossRef]

Gitelson, A. A.

W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012).
[CrossRef]

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ.109(4), 464–472 (2007).
[CrossRef]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results,” Appl. Opt.45(15), 3577–3592 (2006).
[CrossRef] [PubMed]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005).
[CrossRef] [PubMed]

G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
[CrossRef]

G. Dall'Olmo, A. A. Gitelson, and D. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett.30(18), 1–4 (2003).
[CrossRef]

Gordon, H. R.

H. R. Gordon and B. A. Franz, “Remote sensing fo ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ.112(5), 2677–2685 (2008).
[CrossRef]

H. R. Gordon, “Radiometric considerations for ocean color remote sensors,” Appl. Opt.29(22), 3228–3236 (1990).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Gower, J.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

Graham, G. W.

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

Gurlin, D.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Harding, L. W.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

He, X. Q.

D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
[CrossRef]

Herman, J. R.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

Hirata, T.

Hladik, C. M.

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ.109(4), 464–472 (2007).
[CrossRef]

Holz, J.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Holz, J. C.

G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
[CrossRef]

Hu, X. F.

J. Chen, X. F. Hu, and W. T. Quan, “A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China,” Water Environ. Res. (2012).
[CrossRef]

Imai, A.

Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009).
[CrossRef]

Jerome, J. H.

C. E. Binging, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ.112(4), 1702–1711 (2008).
[CrossRef]

Kishino, M.

K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998).
[CrossRef]

Komick, N. M.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

Lavender, S.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Leavitt, B.

G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
[CrossRef]

Lee, Z. P.

Li, L.

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012).
[CrossRef] [PubMed]

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012).
[CrossRef] [PubMed]

Li, S. J.

D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
[CrossRef]

Li, Z.

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012).
[CrossRef] [PubMed]

Loisel, H.

Marani, M.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

Matsushige, K.

Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009).
[CrossRef]

Matsushita, B.

Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009).
[CrossRef]

Matthews, M. W.

M. W. Matthews, “A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters,” Int. J. Remote Sens.32(21), 6855–6899 (2011).
[CrossRef]

Mobley, C. D.

Moore, G. F.

Moore, T. S.

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ.113(11), 2424–2430 (2009).
[CrossRef]

Morel, A.

Moses, W.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Moses, W. J.

W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012).
[CrossRef]

Muller-Karger, F. E.

F. Gilbes, C. Tomas, J. J. Walsh, and F. E. Muller-Karger, “An episodic chlorophyll plume on the west florida shelf,” Cont. Shelf Res.16(9), 1201–1224 (1996).
[CrossRef]

Neale, P. J.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

Nimmo-Smith, W. A. M.

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

Oyama, Y.

Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009).
[CrossRef]

Pan, D. L.

D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
[CrossRef]

Patch, J. S.

Povazhnyi, V.

W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012).
[CrossRef]

Prieur, L.

A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

Quan, W. T.

J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

J. Chen, X. F. Hu, and W. T. Quan, “A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China,” Water Environ. Res. (2012).
[CrossRef]

Richard, W.

W. Richard, J. Could, and A. A. Robert, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ.61(2), 290–301 (1997).
[CrossRef]

Robert, A. A.

W. Richard, J. Could, and A. A. Robert, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ.61(2), 290–301 (1997).
[CrossRef]

Rundquist, D.

G. Dall'Olmo, A. A. Gitelson, and D. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett.30(18), 1–4 (2003).
[CrossRef]

Rundquist, D. C.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
[CrossRef]

Saino, T.

K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998).
[CrossRef]

Saitoh, S.

K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998).
[CrossRef]

Saprygin, V.

W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012).
[CrossRef]

Sasaoka, K.

K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998).
[CrossRef]

Schalles, J. F.

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ.109(4), 464–472 (2007).
[CrossRef]

Shi, K.

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012).
[CrossRef] [PubMed]

Shi, W.

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Silvestri, S.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
[CrossRef]

Smyth, T. J.

Son, S. H.

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Song, K.

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012).
[CrossRef] [PubMed]

Steward, R. G.

Subramanian, A.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

Sundman, L. K.

Suzuki, K.

K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998).
[CrossRef]

Tassan, S.

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurement of aquatic particles retained on filters,” Limnol. Oceanogr.40(8), 1358–1368 (1995).
[CrossRef]

Tomas, C.

F. Gilbes, C. Tomas, J. J. Walsh, and F. E. Muller-Karger, “An episodic chlorophyll plume on the west florida shelf,” Cont. Shelf Res.16(9), 1201–1224 (1996).
[CrossRef]

Tzortziou, M.

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

Volpe, V.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

Walsh, J. J.

F. Gilbes, C. Tomas, J. J. Walsh, and F. E. Muller-Karger, “An episodic chlorophyll plume on the west florida shelf,” Cont. Shelf Res.16(9), 1201–1224 (1996).
[CrossRef]

Wang, M. H.

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Welschmeyer, N. A.

N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr.39(8), 1985–1992 (1994).
[CrossRef]

Yang, D. T.

D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
[CrossRef]

Zhang, X. F.

D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
[CrossRef]

Zhang, X. Y.

D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
[CrossRef]

Appl. Opt. (10)

H. R. Gordon, “Radiometric considerations for ocean color remote sensors,” Appl. Opt.29(22), 3228–3236 (1990).
[CrossRef] [PubMed]

A. Morel and H. Loisel, “Apparent optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt.37(21), 4765–4776 (1998).
[CrossRef] [PubMed]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35(24), 4850–4862 (1996).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. deriving bottom depths and water properties by optimization,” Appl. Opt.38(18), 3831–3843 (1999).
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt.41(6), 1035–1050 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt.41(27), 5755–5772 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt.43(25), 4957–4964 (2004).
[CrossRef] [PubMed]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005).
[CrossRef] [PubMed]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results,” Appl. Opt.45(15), 3577–3592 (2006).
[CrossRef] [PubMed]

T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semi-analytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt.45(31), 8116–8131 (2006).
[CrossRef] [PubMed]

Chin. J. Limnol. Oceanogr. (1)

D. T. Yang, D. L. Pan, X. Y. Zhang, X. F. Zhang, X. Q. He, and S. J. Li, “Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China,” Chin. J. Limnol. Oceanogr.24(4), 428–434 (2006).
[CrossRef]

Cont. Shelf Res. (2)

F. Gilbes, C. Tomas, J. J. Walsh, and F. E. Muller-Karger, “An episodic chlorophyll plume on the west florida shelf,” Cont. Shelf Res.16(9), 1201–1224 (1996).
[CrossRef]

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

Environ. Monit. Assess. (1)

J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

Geophys. Res. Lett. (1)

G. Dall'Olmo, A. A. Gitelson, and D. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett.30(18), 1–4 (2003).
[CrossRef]

Int. J. Remote Sens. (1)

M. W. Matthews, “A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters,” Int. J. Remote Sens.32(21), 6855–6899 (2011).
[CrossRef]

ISPRS J. Photogramm. (1)

Y. Oyama, B. Matsushita, T. Fukushima, K. Matsushige, and A. Imai, “Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data,” ISPRS J. Photogramm.64(1), 73–85 (2009).
[CrossRef]

J. Geophys. Res. (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

J. Oceanogr. (1)

K. Suzuki, M. Kishino, K. Sasaoka, S. Saitoh, and T. Saino, “Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific,” J. Oceanogr.54(5), 517–526 (1998).
[CrossRef]

Limnol. Oceanogr. (4)

A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
[CrossRef]

N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments,” Limnol. Oceanogr.39(8), 1985–1992 (1994).
[CrossRef]

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurement of aquatic particles retained on filters,” Limnol. Oceanogr.40(8), 1358–1368 (1995).
[CrossRef]

Remote Sens. Environ. (14)

W. Richard, J. Could, and A. A. Robert, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ.61(2), 290–301 (1997).
[CrossRef]

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ.96(2), 176–187 (2005).
[CrossRef]

C. E. Binging, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ.112(4), 1702–1711 (2008).
[CrossRef]

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ.89(3), 361–368 (2004).
[CrossRef]

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ.109(4), 464–472 (2007).
[CrossRef]

H. R. Gordon and B. A. Franz, “Remote sensing fo ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ.112(5), 2677–2685 (2008).
[CrossRef]

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramanian, L. W. Harding, and Z. Ahmad, “Determination of chlorophyll contentand tropic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake Distract, Germany,” Remote Sens. Environ.73, 227–235 (2006).

T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ.113(11), 2424–2430 (2009).
[CrossRef]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

W. J. Moses, A. A. Gitelson, S. Berdnikov, V. Saprygin, and V. Povazhnyi, “Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study,” Remote Sens. Environ.121, 118–124 (2012).
[CrossRef]

Sci. Total Environ. (1)

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ.435-436, 141–150 (2012).
[CrossRef] [PubMed]

Water Environ. Res. (1)

J. Chen, X. F. Hu, and W. T. Quan, “A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China,” Water Environ. Res. (2012).
[CrossRef]

Other (9)

J. Chen, W. T. Quan, Z. H. Wen, and T. W. Cui, “An improved three-band semi-analytical algorithm in estimating chlorophyll-a concentration in high turbid Yellow River Estuary, ” Environ. Earth SCI. doi. (2013).
[CrossRef]

J. L. Mueller and G. S. Fargion, Ocean optics protocols for satellite ocean color sensor validation, SeaWiFS Technical Report Series, Revision 3 Part II (2002).

L. Gilpin and P. Tett, A methods for analysis of Benthic chlorophyll-a pigment, in: marine biology report (Napier University Press, 2001).

P. J. Werdell and S. W. Bailey, The SeaWiFS bio-optical archive and storage system (SeaBASS): current architecture and implementation, Goddard Space Flight Center, Greenbelt, Maryland 20771 (2002).

J. Chen and H. Sheng, “An empirical algorithm for hyperspectral remote sensing of chlorophyll-a in turbid waters: a case study on Hyperion sensor,” IEEE Sensor Lett., doi. (2012).
[CrossRef]

J. L. Mueller, C. O. Davis, R. A. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and C. R. McClain, “Above-water radiance and remote sensing measurement and analysis protocols,” Ocean Optics Protocols for Satellite Ocean-Color Sensor Validation, vol. Revision 4, III: Radiometric Measurements and Data Analysis Protocols, pp. NASA Tech. Memo (2003).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS ocean science team agorithm theoretical basis document: case 2 chlorophyll a, ATBD 19, version 7 (2003).

C. D. Mobley, Hydrolight 6.0 user's guide, final report, SRI international, Menlo Park, Calif (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Locations of field measurements, where green circle denotes the calibration data set and the red star refers the validation data set.

Fig. 2
Fig. 2

Bio-optical characterizes of water body in West Florida Shelf waters.

Fig. 3
Fig. 3

Remote-sensing reflectance spectra used in this study. (a) Calibration data set taken over West Florida Shelf in 2000-2001; and (b) Validation data set taken over West Florida Shelf in 1999 and 2002, respectively.

Fig. 4
Fig. 4

Chla absorption coefficient taken over West Florida Shelf in 1999-2002

Fig. 5
Fig. 5

Particulate matters’ absorption characteristics in West Florida Shelf waters. (a) RMS of rrs(λ) linearly relating to ap(λ); and (b) Ratio of sum absorption by particulate matters to total absorption.

Fig. 6
Fig. 6

Scatter plot of estimated versus measured chla concentration of calibration data set using two algorithms. (a) results from the three-band algorithm; and (b) results from the modified three-band algorithm. Here, X and Y axis are the logarithmic coordinates.

Fig. 7
Fig. 7

Empirical spectral relationships. (a) a(600) vs. a(488) and a(610) vs. a(488); and (b) s(600)a(600) vs. s(488)a(488) and s(610)a(610) vs. s(488)a(488).

Fig. 8
Fig. 8

Optimal variation three-band model. (a) Total absorption estimation model; (b) Absorption by chla estimation model; and (c) chla concentration, [chla], retrieval model.

Fig. 9
Fig. 9

The relationship between RE and the chla concentration, where RE is the absolute value of relative error.

Fig. 10
Fig. 10

Comparison between the lab measured chla concentration and field measured absorption by chla in low chla concentration level (<0.2 mg m−3). (a) Lab measured chla concentration versus field measured absorption by chla; and (b) CTR plotted against field measured total absorption, where CTR denotes the ratio of absorption by chla to total absorption.

Fig. 11
Fig. 11

chla concentration plotted against ratio of water backscattering to total backscattering at 670nm. Here, the total backscattering coefficients are derived using formula of a(670)s(670).

Fig. 12
Fig. 12

Flowchart of band turning method for searching optimal band of three-band algorithm

Tables (1)

Tables Icon

Table 1 Descriptive statistics of the optical water quality parameters measured: chla concentration, ad(440), ac(440), ap(440), a(440), and transparency (SD refers to standard deviation).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

RMS= i=1 n ( x mod,i x obs,i x obs,i ) 2 n2 ×100%
r rs ( λ )= R rs ( λ ) T+κQ R rs ( λ )
r rs ( λ )γ b b ( λ ) a( λ )+ b b ( λ )
a( λ )= a w ( λ )+ a p ( λ )+ a c ( λ )+ a d ( λ )
a( λ )= a w ( λ )+ a p ( λ )+ a g ( λ )
r rs 1 ( λ 1 ) r rs 1 ( λ 2 ) 1 γ a p ( λ 1 )+ a w ( λ 1 ) a w ( λ 2 ) b b ( λ 1 )
[ r rs 1 ( λ 1 ) r rs 1 ( λ 2 ) ]× r rs ( λ 3 ) a p ( λ 1 )+ a w ( λ 1 ) a w ( λ 2 ) a w ( λ 3 )
r rs ( λ )= s( λ ) s( λ )+1 [ l 0 + l 1 s( λ ) s( λ )+1 ]
s( λ )= l 0 + l 0 2 +4 l 1 r rs ( λ ) 2 l 1 + l 0 l 0 2 +4 l 1 r rs ( λ )
[ r rs 1 ( λ 1 ) r rs 1 ( λ 2 ) ]× r rs ( λ 3 ) a p ( λ 1 )+ a w ( λ 1 ) a w ( λ 2 )+Δ a g ( λ 1 ) a w ( λ 3 )+ a g ( λ 3 )+ b bp ( λ 3 ) γ( λ 2 ) γ( λ 1 )
[ s 1 ( λ 1 ) s 1 ( λ 2 ) ]×s( λ 3 ) a p ( λ 1 )+ a w ( λ 1 ) a w ( λ 2 )+Δ a g ( λ 1 ) a w ( λ 3 )+ a g ( λ 3 )
[ s 1 ( λ 1 )X s 1 ( λ 2 ) ]×s( λ 3 ) a p ( λ 1 )+ a w ( λ 1 )X a w ( λ 2 ) a w ( λ 3 )+ a g ( λ 3 )
b bp ( λ 1 )= b bp ( 551 ) ( 551 λ ) Y
s( λ )a( λ )= b bw ( λ )+ b bp ( λ )
s( λ 1 )a( λ 1 )= κ 12 s( λ 2 )a( λ 2 )+[ b bw ( λ 1 ) κ 12 b bw ( λ 2 ) ]
a( λ 1 )= ζ 12 a( λ 2 )+ ξ 12
a( λ 2 )= ξ 12 s( λ 1 )[ b bw ( λ 1 ) κ 12 b bw ( λ 2 ) ] κ 12 s( λ 2 ) ζ 12 s( λ 1 )
a( λ 3 )= ξ 13 s( λ 1 )[ b bw ( λ 1 ) κ 13 b bw ( λ 3 ) ] κ 13 s( λ 3 ) ζ 13 s( λ 1 )
a p ( λ 3 )= π 0 a( λ 3 )+ π 1 a( λ 2 )+ π 2

Metrics