Abstract

A novel technique is introduced that dramatically increases the quality and spatial resolution of directly ablated periodic nanostructures on materials. The presented method utilizes a PMMA confinement layer spin coated on the surface of the ablated material reducing the violence and speed of expansion of the molten material. As a result, droplet formation deteriorating the achievable resolution can be completely avoided. Moreover, motion control of the molten material leads to structural details with dimensions well below the irradiation wavelength.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
    [Crossref]
  2. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett. 33(22), 2713–2715 (2008).
    [Crossref] [PubMed]
  3. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
    [Crossref]
  4. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
    [Crossref] [PubMed]
  5. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express 20(2), 905–911 (2012).
    [Crossref] [PubMed]
  6. S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process. 59(1), 79–82 (1994).
    [Crossref]
  7. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
    [Crossref]
  8. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
    [Crossref]
  9. S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A. 104(2), 559–565 (2011).
    [Crossref]
  10. E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc. 1464, 280–293 (2012).
    [Crossref]
  11. P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process. 63(5), 505–508 (1996).
    [Crossref]
  12. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775 (1990).
    [Crossref]
  13. G. Marowsky, P. Simon, K. Mann, and C. K. Rhodes, Femtosecond Excimer Laser Pulses (Springer Handbook of Lasers and Optics, Träger (Ed.), Springer-Verlag Berlin Heidelberg 2012) 842.
  14. J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 355–357 (2003).
    [Crossref]
  15. J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).
    [Crossref]

2012 (2)

2011 (2)

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A. 104(2), 559–565 (2011).
[Crossref]

2009 (2)

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

2008 (1)

2006 (1)

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

2005 (1)

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[Crossref]

2003 (2)

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 355–357 (2003).
[Crossref]

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).
[Crossref]

1996 (1)

P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process. 63(5), 505–508 (1996).
[Crossref]

1994 (1)

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process. 59(1), 79–82 (1994).
[Crossref]

1990 (1)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775 (1990).
[Crossref]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775 (1990).
[Crossref]

Bekesi, J.

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 355–357 (2003).
[Crossref]

Buividas, R.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Chin, S. L.

Dai, Q. F.

Datsyuk, V.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775 (1990).
[Crossref]

Fabbro, R.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775 (1990).
[Crossref]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775 (1990).
[Crossref]

Gattass, R. R.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

Gopal, A. V.

Guo, C.

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[Crossref]

Ihlemann, J.

P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process. 63(5), 505–508 (1996).
[Crossref]

Ivanov, D. S.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

Juodkazis, S.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Karim, E. T.

E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc. 1464, 280–293 (2012).
[Crossref]

Klein-Wiele, J.-H.

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 355–357 (2003).
[Crossref]

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).
[Crossref]

Kudrius, T.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Lan, S.

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

Liang, F.

Lin, Z.

E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc. 1464, 280–293 (2012).
[Crossref]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

Liu, H. Y.

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

Lysak, T. M.

Matthias, E.

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process. 59(1), 79–82 (1994).
[Crossref]

Mazur, E.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

Preuss, S.

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process. 59(1), 79–82 (1994).
[Crossref]

Rosa, L.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Roth, J.

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A. 104(2), 559–565 (2011).
[Crossref]

Shinoda, M.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

Simon, P.

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).
[Crossref]

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 355–357 (2003).
[Crossref]

P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process. 63(5), 505–508 (1996).
[Crossref]

Šlekys, G.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Šliupas, R.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Sonntag, S.

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A. 104(2), 559–565 (2011).
[Crossref]

Stuke, M.

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process. 59(1), 79–82 (1994).
[Crossref]

Sun, Q.

Trebin, H.-R.

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A. 104(2), 559–565 (2011).
[Crossref]

Trichet Paredes, C.

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A. 104(2), 559–565 (2011).
[Crossref]

Trofimov, V. A.

Vallée, R.

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775 (1990).
[Crossref]

Wang, J.

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[Crossref]

Wu, L. J.

Yao, J. W.

Zhang, C. Y.

Zhigilei, L. V.

E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc. 1464, 280–293 (2012).
[Crossref]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

AIP Conf. Proc. (1)

E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc. 1464, 280–293 (2012).
[Crossref]

Appl. Phys. A. (1)

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A. 104(2), 559–565 (2011).
[Crossref]

Appl. Phys. Lett. (2)

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett. 83(23), 4707–4709 (2003).
[Crossref]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process. 63(5), 505–508 (1996).
[Crossref]

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 355–357 (2003).
[Crossref]

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process. 59(1), 79–82 (1994).
[Crossref]

J. Appl. Phys. (2)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775 (1990).
[Crossref]

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[Crossref]

J. Phys. Chem. C (1)

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

Nanotechnology (1)

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

Other (1)

G. Marowsky, P. Simon, K. Mann, and C. K. Rhodes, Femtosecond Excimer Laser Pulses (Springer Handbook of Lasers and Optics, Träger (Ed.), Springer-Verlag Berlin Heidelberg 2012) 842.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simplified model of droplet ejection and resolidification in case of fs-laser ablation of metals. (The abbreviation el-ph coupling stands for electron–phonon coupling.)

Fig. 2
Fig. 2

Resolidified droplets observed after single pulse (0.5 ps) ablation of copper at 1.2 J/cm2.

Fig. 3
Fig. 3

Sketch of the confinement process during laser ablation.

Fig. 4
Fig. 4

Schematic of the irradiation setup.

Fig. 5
Fig. 5

Single shot ablated structures on Ni at 1.1 J/cm2 without (a) and with (b) confinement layer.

Fig. 6
Fig. 6

Single shot ablated structures on Si at 300mJ/cm2 without (a) and with (b) confinement layer.

Fig. 7
Fig. 7

PMMA confinement layer on Si after a single pulse at 300mJ/cm2.

Fig. 8
Fig. 8

Examples of high resolution structure formation in Si using a 2-D periodic interference pattern at a fluence of 400 mJ/cm2 (a) and 500 mJ/cm2 (b).

Fig. 9
Fig. 9

Example of high resolution structure formation in Si using a 1-D periodic interference pattern at a fluence of 500 mJ/cm2.

Metrics