Abstract

A novel technique is introduced that dramatically increases the quality and spatial resolution of directly ablated periodic nanostructures on materials. The presented method utilizes a PMMA confinement layer spin coated on the surface of the ablated material reducing the violence and speed of expansion of the molten material. As a result, droplet formation deteriorating the achievable resolution can be completely avoided. Moreover, motion control of the molten material leads to structural details with dimensions well below the irradiation wavelength.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005).
    [CrossRef]
  2. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008).
    [CrossRef] [PubMed]
  3. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys.105(5), 053102 (2009).
    [CrossRef]
  4. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
    [CrossRef] [PubMed]
  5. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012).
    [CrossRef] [PubMed]
  6. S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process.59(1), 79–82 (1994).
    [CrossRef]
  7. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
    [CrossRef]
  8. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73(13), 134108 (2006).
    [CrossRef]
  9. S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A.104(2), 559–565 (2011).
    [CrossRef]
  10. E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc.1464, 280–293 (2012).
    [CrossRef]
  11. P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process.63(5), 505–508 (1996).
    [CrossRef]
  12. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990).
    [CrossRef]
  13. G. Marowsky, P. Simon, K. Mann, and C. K. Rhodes, Femtosecond Excimer Laser Pulses (Springer Handbook of Lasers and Optics, Träger (Ed.), Springer-Verlag Berlin Heidelberg 2012) 842.
  14. J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
    [CrossRef]
  15. J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
    [CrossRef]

2012 (2)

2011 (2)

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A.104(2), 559–565 (2011).
[CrossRef]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

2009 (2)

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys.105(5), 053102 (2009).
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

2008 (1)

2006 (1)

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73(13), 134108 (2006).
[CrossRef]

2005 (1)

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005).
[CrossRef]

2003 (2)

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

1996 (1)

P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process.63(5), 505–508 (1996).
[CrossRef]

1994 (1)

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process.59(1), 79–82 (1994).
[CrossRef]

1990 (1)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990).
[CrossRef]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990).
[CrossRef]

Bekesi, J.

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

Buividas, R.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

Chin, S. L.

Dai, Q. F.

Datsyuk, V.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990).
[CrossRef]

Fabbro, R.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990).
[CrossRef]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990).
[CrossRef]

Gattass, R. R.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys.105(5), 053102 (2009).
[CrossRef]

Gopal, A. V.

Guo, C.

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005).
[CrossRef]

Ihlemann, J.

P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process.63(5), 505–508 (1996).
[CrossRef]

Ivanov, D. S.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

Juodkazis, S.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

Karim, E. T.

E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc.1464, 280–293 (2012).
[CrossRef]

Klein-Wiele, J.-H.

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

Kudrius, T.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

Lan, S.

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73(13), 134108 (2006).
[CrossRef]

Liang, F.

Lin, Z.

E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc.1464, 280–293 (2012).
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

Liu, H. Y.

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73(13), 134108 (2006).
[CrossRef]

Lysak, T. M.

Matthias, E.

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process.59(1), 79–82 (1994).
[CrossRef]

Mazur, E.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys.105(5), 053102 (2009).
[CrossRef]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73(13), 134108 (2006).
[CrossRef]

Preuss, S.

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process.59(1), 79–82 (1994).
[CrossRef]

Rosa, L.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

Roth, J.

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A.104(2), 559–565 (2011).
[CrossRef]

Shinoda, M.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys.105(5), 053102 (2009).
[CrossRef]

Simon, P.

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process.63(5), 505–508 (1996).
[CrossRef]

Šlekys, G.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

Šliupas, R.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

Sonntag, S.

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A.104(2), 559–565 (2011).
[CrossRef]

Stuke, M.

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process.59(1), 79–82 (1994).
[CrossRef]

Sun, Q.

Trebin, H.-R.

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A.104(2), 559–565 (2011).
[CrossRef]

Trichet Paredes, C.

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A.104(2), 559–565 (2011).
[CrossRef]

Trofimov, V. A.

Vallée, R.

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990).
[CrossRef]

Wang, J.

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005).
[CrossRef]

Wu, L. J.

Yao, J. W.

Zhang, C. Y.

Zhigilei, L. V.

E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc.1464, 280–293 (2012).
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

AIP Conf. Proc. (1)

E. T. Karim, Z. Lin, and L. V. Zhigilei, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc.1464, 280–293 (2012).
[CrossRef]

Appl. Phys. A. (1)

S. Sonntag, C. Trichet Paredes, J. Roth, and H.-R. Trebin, “Molecular dynamics simulations of cluster distribution, from femtosecond laser ablation in aluminum,” Appl. Phys. A.104(2), 559–565 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

P. Simon and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys., A Mater. Sci. Process.63(5), 505–508 (1996).
[CrossRef]

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

S. Preuss, E. Matthias, and M. Stuke, “Sub-picosecond UV-laser ablation of Ni films: Strong fluence reduction and thickness-independent removal,” Appl. Phys., A Mater. Sci. Process.59(1), 79–82 (1994).
[CrossRef]

J. Appl. Phys. (2)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser‐produced plasma in confined geometry,” J. Appl. Phys.68(2), 775 (1990).
[CrossRef]

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys.105(5), 053102 (2009).
[CrossRef]

J. Phys. Chem. C (1)

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

Nanotechnology (1)

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B73(13), 134108 (2006).
[CrossRef]

Other (1)

G. Marowsky, P. Simon, K. Mann, and C. K. Rhodes, Femtosecond Excimer Laser Pulses (Springer Handbook of Lasers and Optics, Träger (Ed.), Springer-Verlag Berlin Heidelberg 2012) 842.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simplified model of droplet ejection and resolidification in case of fs-laser ablation of metals. (The abbreviation el-ph coupling stands for electron–phonon coupling.)

Fig. 2
Fig. 2

Resolidified droplets observed after single pulse (0.5 ps) ablation of copper at 1.2 J/cm2.

Fig. 3
Fig. 3

Sketch of the confinement process during laser ablation.

Fig. 4
Fig. 4

Schematic of the irradiation setup.

Fig. 5
Fig. 5

Single shot ablated structures on Ni at 1.1 J/cm2 without (a) and with (b) confinement layer.

Fig. 6
Fig. 6

Single shot ablated structures on Si at 300mJ/cm2 without (a) and with (b) confinement layer.

Fig. 7
Fig. 7

PMMA confinement layer on Si after a single pulse at 300mJ/cm2.

Fig. 8
Fig. 8

Examples of high resolution structure formation in Si using a 2-D periodic interference pattern at a fluence of 400 mJ/cm2 (a) and 500 mJ/cm2 (b).

Fig. 9
Fig. 9

Example of high resolution structure formation in Si using a 1-D periodic interference pattern at a fluence of 500 mJ/cm2.

Metrics