Abstract

We present a high resolution objective lens made entirely from catalog singlets that has a numerical aperture of 0.36. It corrects for aberrations introduced by a glass window and has a long working distance of 35 mm, making it suitable for imaging objects within a vacuum system. This offers simple high resolution imaging for many in the quantum gas community. The objective achieves a resolution of 1.3 μm at the design wavelength of 780 nm, and a diffraction-limited field of view of 360 μm when imaging through a 5 mm thick window. Images of a resolution target and a pinhole show quantitative agreement with the simulated lens performance. The objective is suitable for diffraction-limited monochromatic imaging on the D2 line of all the alkalis by changing only the aperture diameter, retaining numerical apertures above 0.32. The design corrects for window thicknesses of up to 15 mm if the singlet spacings are modified.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kawaguchi and M. Ueda, “Spinor Bose–Einstein condensates,” Phys. Rep.520, 253–381 (2012).
    [CrossRef]
  2. E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom,” Nat. Commun.3, 933 (2012).
    [CrossRef] [PubMed]
  3. H. Gross, Handbook of Optical Systems (Wiley-VCH, 2005) vol. 1.
  4. Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
    [CrossRef]
  5. W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009).
    [CrossRef] [PubMed]
  6. E. A. Salim, S. C. Caliga, J. B. Pfeiffer, and D. Z. Anderson, “High-resolution imaging and optical control of Bose–Einstein condensates in an atom chip magnetic trap,” arXiv:1208.4897 (2012).
  7. Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009).
    [CrossRef]
  8. D. Douillet, E. Rolley, C. Guthmann, and A. Prevost, “An easy-to-build long working distance microscope,” Physica B284–288, 2059–2060 (2000).
    [CrossRef]
  9. W. Alt, “An objective lens for efficient fluorescence detection of single atoms,” Optik113, 142–144 (2002).
    [CrossRef]
  10. T. B. Ottenstein, “A new objective for high-resolution imaging of Bose–Einstein condensates,” Diploma thesis, University of Heidelberg (2006).
  11. K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys.3, 556–560 (2007).
    [CrossRef]
  12. R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
    [CrossRef]
  13. J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
    [CrossRef] [PubMed]
  14. B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011).
    [CrossRef]
  15. B. P. Anderson and M. A. Kasevich, “Spatial observation of Bose–Einstein condensation of 87Rb in a confining potential,” Phys. Rev. A59, 938–941 (1999).
    [CrossRef]
  16. The objective can also be modeled using the free software OSLO EDU, which is limited to ten surfaces, because the first surface is flat and need not be included in the model.
  17. H. Gross, Handbook of Optical Systems (Wiley-VCH, 2007) vol. 3.
  18. W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill, 2005).
  19. R. E. Fischer and K. L. Mason, “Spherical aberration – some fascinating observations,” Proc. SPIE0766, 53–60 (1987).
    [CrossRef]
  20. P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

2012 (2)

Y. Kawaguchi and M. Ueda, “Spinor Bose–Einstein condensates,” Phys. Rep.520, 253–381 (2012).
[CrossRef]

E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom,” Nat. Commun.3, 933 (2012).
[CrossRef] [PubMed]

2011 (1)

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011).
[CrossRef]

2010 (1)

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
[CrossRef] [PubMed]

2009 (3)

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009).
[CrossRef] [PubMed]

Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009).
[CrossRef]

2007 (2)

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys.3, 556–560 (2007).
[CrossRef]

2002 (1)

W. Alt, “An objective lens for efficient fluorescence detection of single atoms,” Optik113, 142–144 (2002).
[CrossRef]

2000 (1)

D. Douillet, E. Rolley, C. Guthmann, and A. Prevost, “An easy-to-build long working distance microscope,” Physica B284–288, 2059–2060 (2000).
[CrossRef]

1999 (1)

B. P. Anderson and M. A. Kasevich, “Spatial observation of Bose–Einstein condensation of 87Rb in a confining potential,” Phys. Rev. A59, 938–941 (1999).
[CrossRef]

1987 (1)

R. E. Fischer and K. L. Mason, “Spherical aberration – some fascinating observations,” Proc. SPIE0766, 53–60 (1987).
[CrossRef]

Alt, W.

W. Alt, “An objective lens for efficient fluorescence detection of single atoms,” Optik113, 142–144 (2002).
[CrossRef]

Anderson, B. P.

B. P. Anderson and M. A. Kasevich, “Spatial observation of Bose–Einstein condensation of 87Rb in a confining potential,” Phys. Rev. A59, 938–941 (1999).
[CrossRef]

Anderson, D. Z.

E. A. Salim, S. C. Caliga, J. B. Pfeiffer, and D. Z. Anderson, “High-resolution imaging and optical control of Bose–Einstein condensates in an atom chip magnetic trap,” arXiv:1208.4897 (2012).

Anderson, R. P.

P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

Armellin, C.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Bakr, W. S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009).
[CrossRef] [PubMed]

Betz, T.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Billington, C. J.

P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

Bloch, I.

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
[CrossRef] [PubMed]

Browaeys, A.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Bücker, R.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Caliga, S. C.

E. A. Salim, S. C. Caliga, J. B. Pfeiffer, and D. Z. Anderson, “High-resolution imaging and optical control of Bose–Einstein condensates in an atom chip magnetic trap,” arXiv:1208.4897 (2012).

Cheneau, M.

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
[CrossRef] [PubMed]

Compton, R. L.

Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009).
[CrossRef]

Douillet, D.

D. Douillet, E. Rolley, C. Guthmann, and A. Prevost, “An easy-to-build long working distance microscope,” Physica B284–288, 2059–2060 (2000).
[CrossRef]

Endres, M.

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
[CrossRef] [PubMed]

Esslinger, T.

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011).
[CrossRef]

Fischer, R. E.

R. E. Fischer and K. L. Mason, “Spherical aberration – some fascinating observations,” Proc. SPIE0766, 53–60 (1987).
[CrossRef]

Fölling, S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009).
[CrossRef] [PubMed]

Fournet, P.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Gillen, J. I.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009).
[CrossRef] [PubMed]

Grangier, P.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Greiner, M.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009).
[CrossRef] [PubMed]

Gross, H.

H. Gross, Handbook of Optical Systems (Wiley-VCH, 2007) vol. 3.

H. Gross, Handbook of Optical Systems (Wiley-VCH, 2005) vol. 1.

Guthmann, C.

D. Douillet, E. Rolley, C. Guthmann, and A. Prevost, “An easy-to-build long working distance microscope,” Physica B284–288, 2059–2060 (2000).
[CrossRef]

Helmerson, K.

P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

Jasperse, M.

P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

Jechow, A.

E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom,” Nat. Commun.3, 933 (2012).
[CrossRef] [PubMed]

Johnstone, S. P.

P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

Kasevich, M. A.

B. P. Anderson and M. A. Kasevich, “Spatial observation of Bose–Einstein condensation of 87Rb in a confining potential,” Phys. Rev. A59, 938–941 (1999).
[CrossRef]

Kawaguchi, Y.

Y. Kawaguchi and M. Ueda, “Spinor Bose–Einstein condensates,” Phys. Rep.520, 253–381 (2012).
[CrossRef]

Kielpinski, D.

E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom,” Nat. Commun.3, 933 (2012).
[CrossRef] [PubMed]

Koller, C.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Kuhr, S.

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
[CrossRef] [PubMed]

Lamare, M.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Lance, A. M.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Li, X.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys.3, 556–560 (2007).
[CrossRef]

Lin, Y.-J.

Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009).
[CrossRef]

Manz, S.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Marion, H.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Mason, K. L.

R. E. Fischer and K. L. Mason, “Spherical aberration – some fascinating observations,” Proc. SPIE0766, 53–60 (1987).
[CrossRef]

Meineke, J.

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011).
[CrossRef]

Mercier, R.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Messin, G.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Moritz, H.

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011).
[CrossRef]

Müller, T.

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011).
[CrossRef]

Nelson, K. D.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys.3, 556–560 (2007).
[CrossRef]

Norton, B. G.

E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom,” Nat. Commun.3, 933 (2012).
[CrossRef] [PubMed]

Ottenstein, T. B.

T. B. Ottenstein, “A new objective for high-resolution imaging of Bose–Einstein condensates,” Diploma thesis, University of Heidelberg (2006).

Peng, A.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009).
[CrossRef] [PubMed]

Perrin, A.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Perry, A. R.

Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009).
[CrossRef]

Pfeiffer, J. B.

E. A. Salim, S. C. Caliga, J. B. Pfeiffer, and D. Z. Anderson, “High-resolution imaging and optical control of Bose–Einstein condensates in an atom chip magnetic trap,” arXiv:1208.4897 (2012).

Plisson, T.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Porto, J. V.

Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009).
[CrossRef]

Prevost, A.

D. Douillet, E. Rolley, C. Guthmann, and A. Prevost, “An easy-to-build long working distance microscope,” Physica B284–288, 2059–2060 (2000).
[CrossRef]

Rolley, E.

D. Douillet, E. Rolley, C. Guthmann, and A. Prevost, “An easy-to-build long working distance microscope,” Physica B284–288, 2059–2060 (2000).
[CrossRef]

Rottmann, J.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Salim, E. A.

E. A. Salim, S. C. Caliga, J. B. Pfeiffer, and D. Z. Anderson, “High-resolution imaging and optical control of Bose–Einstein condensates in an atom chip magnetic trap,” arXiv:1208.4897 (2012).

Schmiedmayer, J.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Schumm, T.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Sherson, J. F.

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
[CrossRef] [PubMed]

Smith, W. J.

W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill, 2005).

Sortais, Y. R. P.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Spielman, I. B.

Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009).
[CrossRef]

Starkey, P. T.

P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

Streed, E. W.

E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom,” Nat. Commun.3, 933 (2012).
[CrossRef] [PubMed]

Tuchendler, C.

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Turner, L. D.

P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

Ueda, M.

Y. Kawaguchi and M. Ueda, “Spinor Bose–Einstein condensates,” Phys. Rep.520, 253–381 (2012).
[CrossRef]

Weiss, D. S.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys.3, 556–560 (2007).
[CrossRef]

Weitenberg, C.

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
[CrossRef] [PubMed]

Zimmermann, B.

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011).
[CrossRef]

Nat. Commun. (1)

E. W. Streed, A. Jechow, B. G. Norton, and D. Kielpinski, “Absorption imaging of a single atom,” Nat. Commun.3, 933 (2012).
[CrossRef] [PubMed]

Nat. Phys. (1)

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys.3, 556–560 (2007).
[CrossRef]

Nature (2)

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom-resolved fluorescence imaging of an atomic Mott insulator,” Nature467, 68–72 (2010).
[CrossRef] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature462, 74–77 (2009).
[CrossRef] [PubMed]

New J. Phys. (2)

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys.13, 043007 (2011).
[CrossRef]

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” New J. Phys.11, 103039 (2009).
[CrossRef]

Optik (1)

W. Alt, “An objective lens for efficient fluorescence detection of single atoms,” Optik113, 142–144 (2002).
[CrossRef]

Phys. Rep. (1)

Y. Kawaguchi and M. Ueda, “Spinor Bose–Einstein condensates,” Phys. Rep.520, 253–381 (2012).
[CrossRef]

Phys. Rev. A (3)

Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, “Diffraction-limited optics for single-atom manipulation,” Phys. Rev. A75, 013406 (2007).
[CrossRef]

Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A79, 063631 (2009).
[CrossRef]

B. P. Anderson and M. A. Kasevich, “Spatial observation of Bose–Einstein condensation of 87Rb in a confining potential,” Phys. Rev. A59, 938–941 (1999).
[CrossRef]

Physica B (1)

D. Douillet, E. Rolley, C. Guthmann, and A. Prevost, “An easy-to-build long working distance microscope,” Physica B284–288, 2059–2060 (2000).
[CrossRef]

Proc. SPIE (1)

R. E. Fischer and K. L. Mason, “Spherical aberration – some fascinating observations,” Proc. SPIE0766, 53–60 (1987).
[CrossRef]

Other (7)

P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D. Turner, and R. P. Anderson, “A scripted control system for autonomous hardware-timed experiments,” arXiv:1303.0080 [cond-mat.quant-gas].

E. A. Salim, S. C. Caliga, J. B. Pfeiffer, and D. Z. Anderson, “High-resolution imaging and optical control of Bose–Einstein condensates in an atom chip magnetic trap,” arXiv:1208.4897 (2012).

H. Gross, Handbook of Optical Systems (Wiley-VCH, 2005) vol. 1.

The objective can also be modeled using the free software OSLO EDU, which is limited to ten surfaces, because the first surface is flat and need not be included in the model.

H. Gross, Handbook of Optical Systems (Wiley-VCH, 2007) vol. 3.

W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill, 2005).

T. B. Ottenstein, “A new objective for high-resolution imaging of Bose–Einstein condensates,” Diploma thesis, University of Heidelberg (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics