Abstract

The authors build on previous experience in the optimization of white-light sources based on combinations of narrow-band spectra. They extend those concepts by using delta-function spectra to study the prospects of future optimal laser-based sources. The optimization process is based on a trade-off between the color rendering properties and the luminous efficacy of the radiation. Optimal solutions for four, five and six delta-function spectra with correlated color temperatures in the 3000 to 5500 K range are presented and analyzed. White-light sources with these properties would likely find wide acceptance in numerous lighting applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
    [CrossRef]
  2. Y. Ohno, “Simulation analysis of white LED spectra and color rendering,” in Proceedings of CIE Expert Symposium on LED Light Sources, Tokyo, 2004.
  3. R. Stevenson, “The LED’s dark secret,” IEEE Spectr.•••, 23–27 (2009).
  4. A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today54(12), 42–47 (2001).
    [CrossRef]
  5. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005).
    [CrossRef]
  6. A. Žakauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002).
    [CrossRef]
  7. G. He, L. Zheng, and H. Yan, “LED white lights with high CRI and high luminous efficacy,” Proc. SPIE7852, 78520A (2010).
    [CrossRef]
  8. Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” CIE Publication 13.3, CIE, Vienna (1995).
  9. T. Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, “A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores,” Opt. Express18(1), 340–347 (2010).
    [CrossRef] [PubMed]
  10. T. Erdem, S. Nizamoglu, and H. V. Demir, “Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes,” Opt. Express20(3), 3275–3295 (2012).
    [CrossRef] [PubMed]
  11. A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng.51(4), 044003 (2012).
    [CrossRef]
  12. S. Soltic and A. N. Chalmers, “Differential evolution for the optimisation of multi-band white LED light sources,” Lighting Res. Tech.0, 1–14 (2011).
  13. M. E. Coltrin, J. Y. Tsao, and Y. Ohno, “Limits on the maximum attainable efficiency for solid-state lighting,” Proc. SPIE6841, 684102, 684102-12 (2007).
    [CrossRef]
  14. A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express19(S4Suppl 4), A982–A990 (2011).
    [CrossRef] [PubMed]
  15. A. Chalmers and S. Soltic, “Towards the optimum light source spectrum,” Adv. Optoelectron.2010, 596825 (2010).
    [CrossRef]
  16. X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Tech.36(3), 183–199 (2004).
    [CrossRef]
  17. Y.-H. Chao, H.-S. Chen, P. Sun, M. R. Luo, J. Liao, and A. Lin, “New experimental data for evaluating colour rendering indexes,” AIC 2012 Interim Meeting, In Color we live: Color and Environment, Taipei 2012, pp. 238–241.
  18. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
    [CrossRef]

2012 (2)

2011 (2)

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express19(S4Suppl 4), A982–A990 (2011).
[CrossRef] [PubMed]

S. Soltic and A. N. Chalmers, “Differential evolution for the optimisation of multi-band white LED light sources,” Lighting Res. Tech.0, 1–14 (2011).

2010 (4)

G. He, L. Zheng, and H. Yan, “LED white lights with high CRI and high luminous efficacy,” Proc. SPIE7852, 78520A (2010).
[CrossRef]

A. Chalmers and S. Soltic, “Towards the optimum light source spectrum,” Adv. Optoelectron.2010, 596825 (2010).
[CrossRef]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
[CrossRef]

T. Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, “A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores,” Opt. Express18(1), 340–347 (2010).
[CrossRef] [PubMed]

2009 (1)

R. Stevenson, “The LED’s dark secret,” IEEE Spectr.•••, 23–27 (2009).

2007 (2)

Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
[CrossRef]

M. E. Coltrin, J. Y. Tsao, and Y. Ohno, “Limits on the maximum attainable efficiency for solid-state lighting,” Proc. SPIE6841, 684102, 684102-12 (2007).
[CrossRef]

2005 (1)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005).
[CrossRef]

2004 (1)

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Tech.36(3), 183–199 (2004).
[CrossRef]

2002 (1)

A. Žakauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002).
[CrossRef]

2001 (1)

A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today54(12), 42–47 (2001).
[CrossRef]

Bergh, A.

A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today54(12), 42–47 (2001).
[CrossRef]

Brueck, S. R. J.

Chalmers, A.

A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng.51(4), 044003 (2012).
[CrossRef]

A. Chalmers and S. Soltic, “Towards the optimum light source spectrum,” Adv. Optoelectron.2010, 596825 (2010).
[CrossRef]

Chalmers, A. N.

S. Soltic and A. N. Chalmers, “Differential evolution for the optimisation of multi-band white LED light sources,” Lighting Res. Tech.0, 1–14 (2011).

Coltrin, M. E.

M. E. Coltrin, J. Y. Tsao, and Y. Ohno, “Limits on the maximum attainable efficiency for solid-state lighting,” Proc. SPIE6841, 684102, 684102-12 (2007).
[CrossRef]

Craford, G.

A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today54(12), 42–47 (2001).
[CrossRef]

Davis, W.

Demir, H. V.

Duggal, A.

A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today54(12), 42–47 (2001).
[CrossRef]

Erdem, T.

Gaska, R.

A. Žakauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002).
[CrossRef]

Guangdi, S.

Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
[CrossRef]

Guo, X.

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Tech.36(3), 183–199 (2004).
[CrossRef]

Haitz, R.

A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today54(12), 42–47 (2001).
[CrossRef]

He, G.

G. He, L. Zheng, and H. Yan, “LED white lights with high CRI and high luminous efficacy,” Proc. SPIE7852, 78520A (2010).
[CrossRef]

Houser, K. W.

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Tech.36(3), 183–199 (2004).
[CrossRef]

Ivanauskas, F.

A. Žakauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002).
[CrossRef]

Lei, Z.

Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
[CrossRef]

Ming, L. Q.

Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
[CrossRef]

Neumann, A.

Nizamoglu, S.

Ohno, Y.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express19(S4Suppl 4), A982–A990 (2011).
[CrossRef] [PubMed]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
[CrossRef]

M. E. Coltrin, J. Y. Tsao, and Y. Ohno, “Limits on the maximum attainable efficiency for solid-state lighting,” Proc. SPIE6841, 684102, 684102-12 (2007).
[CrossRef]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005).
[CrossRef]

Y. Ohno, “Simulation analysis of white LED spectra and color rendering,” in Proceedings of CIE Expert Symposium on LED Light Sources, Tokyo, 2004.

Shur, M. S.

A. Žakauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002).
[CrossRef]

Soltic, S.

A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng.51(4), 044003 (2012).
[CrossRef]

S. Soltic and A. N. Chalmers, “Differential evolution for the optimisation of multi-band white LED light sources,” Lighting Res. Tech.0, 1–14 (2011).

A. Chalmers and S. Soltic, “Towards the optimum light source spectrum,” Adv. Optoelectron.2010, 596825 (2010).
[CrossRef]

Stevenson, R.

R. Stevenson, “The LED’s dark secret,” IEEE Spectr.•••, 23–27 (2009).

Sun, X. W.

Ting, L.

Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
[CrossRef]

Tsao, J. Y.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express19(S4Suppl 4), A982–A990 (2011).
[CrossRef] [PubMed]

M. E. Coltrin, J. Y. Tsao, and Y. Ohno, “Limits on the maximum attainable efficiency for solid-state lighting,” Proc. SPIE6841, 684102, 684102-12 (2007).
[CrossRef]

Vaicekauskas, R.

A. Žakauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002).
[CrossRef]

Wierer, J. J.

Xia, G.

Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
[CrossRef]

Xiaoling, G.

Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
[CrossRef]

Yan, H.

G. He, L. Zheng, and H. Yan, “LED white lights with high CRI and high luminous efficacy,” Proc. SPIE7852, 78520A (2010).
[CrossRef]

Žakauskas, A.

A. Žakauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002).
[CrossRef]

Zheng, L.

G. He, L. Zheng, and H. Yan, “LED white lights with high CRI and high luminous efficacy,” Proc. SPIE7852, 78520A (2010).
[CrossRef]

Adv. Optoelectron. (1)

A. Chalmers and S. Soltic, “Towards the optimum light source spectrum,” Adv. Optoelectron.2010, 596825 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

A. Žakauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002).
[CrossRef]

IEEE Spectr. (1)

R. Stevenson, “The LED’s dark secret,” IEEE Spectr.•••, 23–27 (2009).

Lighting Res. Tech. (2)

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Tech.36(3), 183–199 (2004).
[CrossRef]

S. Soltic and A. N. Chalmers, “Differential evolution for the optimisation of multi-band white LED light sources,” Lighting Res. Tech.0, 1–14 (2011).

Microelectron. J. (1)

Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Q. Ming, and S. Guangdi, “Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs,” Microelectron. J.38(1), 1–6 (2007).
[CrossRef]

Opt. Eng. (3)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005).
[CrossRef]

A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng.51(4), 044003 (2012).
[CrossRef]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
[CrossRef]

Opt. Express (3)

Phys. Today (1)

A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting,” Phys. Today54(12), 42–47 (2001).
[CrossRef]

Proc. SPIE (2)

G. He, L. Zheng, and H. Yan, “LED white lights with high CRI and high luminous efficacy,” Proc. SPIE7852, 78520A (2010).
[CrossRef]

M. E. Coltrin, J. Y. Tsao, and Y. Ohno, “Limits on the maximum attainable efficiency for solid-state lighting,” Proc. SPIE6841, 684102, 684102-12 (2007).
[CrossRef]

Other (3)

Y.-H. Chao, H.-S. Chen, P. Sun, M. R. Luo, J. Liao, and A. Lin, “New experimental data for evaluating colour rendering indexes,” AIC 2012 Interim Meeting, In Color we live: Color and Environment, Taipei 2012, pp. 238–241.

Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” CIE Publication 13.3, CIE, Vienna (1995).

Y. Ohno, “Simulation analysis of white LED spectra and color rendering,” in Proceedings of CIE Expert Symposium on LED Light Sources, Tokyo, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Relative spectral power distributions versus wavelengths (nm) for the three optimized spectra of tetrachromatic illuminants with Ra = 90 and ηrad ≥ 357 lumens per radiant watt. Numbers above each delta function show the individual peak wavelengths in nm.

Fig. 2
Fig. 2

Relative spectral power distributions versus wavelengths (nm) for the three optimized spectra of pentachromatic illuminants with Ra > 90, ηrad ≥ 364 lumens per radiant watt. Numbers above each delta function show the individual peak wavelengths in nm.

Fig. 3
Fig. 3

Relative spectral power distributions versus wavelengths (nm) for the three optimized spectra of hexachromatic illuminants with Ra ≥ 90, ηrad ≥ 317 lumens per radiant watt. Numbers above each delta function show the individual peak wavelengths in nm.

Fig. 4
Fig. 4

Relative spectral power distributions versus wavelengths (nm) for the three suboptimal spectra of tetrachromatic illuminants with Ra ≥ 71, ηrad ≥ 364 lumens per radiant watt. Numbers above each delta function show the individual peak wavelengths in nm.

Tables (4)

Tables Icon

Table 1 Optimization of mixtures of 4 delta-function spectraa

Tables Icon

Table 2 Optimization of mixtures of 5 delta-function spectraa

Tables Icon

Table 3 Optimization of mixtures of 6 delta-function spectraa

Tables Icon

Table 4 Mixtures of ‘suboptimal’ tetrachromatic mixturesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η rad = η rad(max) λ V(λ)S(λ)dλ λ S(λ)dλ .
f=a R a +b R b +c R c +d R min +e η rad

Metrics