Abstract

We report on a novel polarization switching laser from a bidirectional passively mode-locked thulium(Tm)-doped fiber oscillator, which was characterized by the periodical change of polarization state of every pulse. The switching laser was created by combing two orthogonally stable vector solitons, which were found to be wave-breaking-free pulses in the all-anomalous-dispersion regime. The measured repetition rates of switching laser and the corresponding vector solitons were 49.596 MHz, 24.798 MHz, and 24.798MHz. By controlling wave plates, either of the polarized pulse trains can be switched on or off. To our knowledge, this is the first report of polarization switching laser with vector solitons in Tm fiber oscillators.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Wang, J. H. Geng, T. Luo, and S. B. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett.34(23), 3616–3618 (2009).
    [CrossRef] [PubMed]
  2. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett.21(3), 128–130 (2009).
    [CrossRef] [PubMed]
  3. R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett.36(5), 609–611 (2011).
    [CrossRef] [PubMed]
  4. Q. Wang, J. H. Geng, Z. Jiang, T. Luo, and S. B. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett.23(11), 682–684 (2011).
    [CrossRef]
  5. L. M. Yang, P. Wan, V. Protopopov, and J. Liu, “2 µm femtosecond fiber laser at low repetition rate and high pulse energy,” Opt. Express20(5), 5683–5688 (2012).
    [CrossRef] [PubMed]
  6. G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: towards a laser surgery with cellular precision,” Med. Laser Appl.20(2), 135–139 (2005).
    [CrossRef]
  7. P. Kadwani, R. A. Sims, M. Baudelet, L. Shah, and M. C. Richardson, “Atmospheric propagation testing using broadband thulium fiber systems,” in Conference on Fiber Lasers Applications (FILAS), (Optical Society of America, 2011), paper FWB3.
  8. M. Eckerle, C. Kieleck, J. Świderski, S. D. Jackson, G. Mazé, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett.37(4), 512–514 (2012).
    [CrossRef] [PubMed]
  9. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett.36(19), 3750–3752 (2011).
    [CrossRef] [PubMed]
  10. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
    [CrossRef] [PubMed]
  11. R. Kadel and B. R. Washburn, “All-fiber passively mode-locked thulium/holmium laser with two center wavelengths,” Appl. Opt.51(27), 6465–6470 (2012).
    [CrossRef] [PubMed]
  12. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett.37(13), 2466–2468 (2012).
    [CrossRef] [PubMed]
  13. N. Buholz and M. Chodorow, “3.2 - Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron.3(11), 454–459 (1967).
    [CrossRef]
  14. K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett.33(1), 64–66 (2008).
    [CrossRef] [PubMed]
  15. A. Braga, J. C. Diels, R. Jain, R. Kay, and L. Wang, “Bidirectional mode-locked fiber ring laser using self-regenerative, passively controlled, threshold gating,” Opt. Lett.35(15), 2648–2650 (2010).
    [CrossRef] [PubMed]
  16. C. Ouyang, P. Shum, K. Wu, J. H. Wong, H. Q. Lam, and S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Opt. Lett.36(11), 2089–2091 (2011).
    [CrossRef] [PubMed]
  17. D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
    [CrossRef] [PubMed]
  18. M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett.59(17), 2073–2075 (1991).
    [CrossRef]
  19. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, Fourth Edition & Applications of Nonlinear Fiber Optics, Second Edition (Academic Press, 2007).
  21. L. M. Zhao, D. Y. Tang, F. Lin, and B. Zhao, “Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity,” Opt. Express12(19), 4573–4578 (2004).
    [CrossRef] [PubMed]
  22. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
    [CrossRef]
  23. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009).
    [CrossRef] [PubMed]
  24. S. T. Cundiff, B. C. Collings, and W. H. Knox, “Polarization locking in an isotropic, mode locked soliton Er/Yb fiber laser,” Opt. Express1(1), 12–20 (1997).
    [CrossRef] [PubMed]
  25. M. Schmidt, M. Witte, F. Buchali, E. Lach, and H. Bülow, “Adaptive PMD compensation for 170 Gbit/s RZ transmission systems with alternating polarisation,” in Conference on Optical Fiber Communication (OFC), (Optical Society of America, 2005), paper JWA38.
    [CrossRef]
  26. S. Appathurai, V. Mikhailov, R. I. Killey, and P. Bayvel, “Suppression of intra-channel nonlinear distortion in 40Gbit/s transmission over standard single mode fibre using alternate-phase RZ and alternate-polarisation,” in Conference on Optical Fiber Communication (OFC), (Optical Society of America, 2004), paper ThE5.

2012

2011

2010

2009

2008

K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett.33(1), 64–66 (2008).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
[CrossRef]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
[CrossRef] [PubMed]

2005

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: towards a laser surgery with cellular precision,” Med. Laser Appl.20(2), 135–139 (2005).
[CrossRef]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

2004

1997

1991

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett.59(17), 2073–2075 (1991).
[CrossRef]

1967

N. Buholz and M. Chodorow, “3.2 - Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron.3(11), 454–459 (1967).
[CrossRef]

Aditya, S.

Braga, A.

Buholz, N.

N. Buholz and M. Chodorow, “3.2 - Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron.3(11), 454–459 (1967).
[CrossRef]

Chen, K. P.

Chen, T.

Chodorow, M.

N. Buholz and M. Chodorow, “3.2 - Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron.3(11), 454–459 (1967).
[CrossRef]

Collings, B. C.

Cundiff, S. T.

Diels, J. C.

Eckerle, M.

Eichhorn, M.

Endl, E.

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: towards a laser surgery with cellular precision,” Med. Laser Appl.20(2), 135–139 (2005).
[CrossRef]

Ferrari, A. C.

Geng, J. H.

Q. Wang, J. H. Geng, Z. Jiang, T. Luo, and S. B. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett.23(11), 682–684 (2011).
[CrossRef]

Q. Wang, J. H. Geng, T. Luo, and S. B. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett.34(23), 3616–3618 (2009).
[CrossRef] [PubMed]

Gumenyuk, R.

Hasan, T.

Haxsen, F.

Heberle, A. P.

Hüttmann, G.

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: towards a laser surgery with cellular precision,” Med. Laser Appl.20(2), 135–139 (2005).
[CrossRef]

Jackson, S. D.

Jain, R.

Jiang, S. B.

Q. Wang, J. H. Geng, Z. Jiang, T. Luo, and S. B. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett.23(11), 682–684 (2011).
[CrossRef]

Q. Wang, J. H. Geng, T. Luo, and S. B. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett.34(23), 3616–3618 (2009).
[CrossRef] [PubMed]

Jiang, Z.

Q. Wang, J. H. Geng, Z. Jiang, T. Luo, and S. B. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett.23(11), 682–684 (2011).
[CrossRef]

Kadel, R.

Kay, R.

Kelleher, E. J. R.

Kieleck, C.

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett.21(3), 128–130 (2009).
[CrossRef] [PubMed]

K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett.33(1), 64–66 (2008).
[CrossRef] [PubMed]

Kimura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett.59(17), 2073–2075 (1991).
[CrossRef]

Knox, W. H.

Kracht, D.

Lam, H. Q.

Lin, F.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

Liu, J.

Lu, C.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
[CrossRef]

Luo, T.

Q. Wang, J. H. Geng, Z. Jiang, T. Luo, and S. B. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett.23(11), 682–684 (2011).
[CrossRef]

Q. Wang, J. H. Geng, T. Luo, and S. B. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett.34(23), 3616–3618 (2009).
[CrossRef] [PubMed]

Mansuripur, M.

Mazé, G.

Morgner, U.

Nakazawa, M.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett.59(17), 2073–2075 (1991).
[CrossRef]

Neumann, J.

Okhotnikov, O. G.

Ouyang, C.

Popa, D.

Popov, S. V.

Protopopov, V.

Shum, P.

Sun, Z.

Swiderski, J.

Tam, H. Y.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
[CrossRef]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
[CrossRef]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

L. M. Zhao, D. Y. Tang, F. Lin, and B. Zhao, “Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity,” Opt. Express12(19), 4573–4578 (2004).
[CrossRef] [PubMed]

Taylor, J. R.

Torrisi, F.

Tuovinen, H.

Vartiainen, I.

Wan, P.

Wandt, D.

Wang, F.

Wang, L.

Wang, Q.

Washburn, B. R.

Wienke, A.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett.21(3), 128–130 (2009).
[CrossRef] [PubMed]

Wong, J. H.

Wu, K.

Wu, X.

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009).
[CrossRef] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
[CrossRef]

Yang, L. M.

Yao, C.

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: towards a laser surgery with cellular precision,” Med. Laser Appl.20(2), 135–139 (2005).
[CrossRef]

Yoshida, E.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett.59(17), 2073–2075 (1991).
[CrossRef]

Zhang, B.

Zhang, H.

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009).
[CrossRef] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
[CrossRef]

Zhang, M.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

L. M. Zhao, D. Y. Tang, F. Lin, and B. Zhao, “Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity,” Opt. Express12(19), 4573–4578 (2004).
[CrossRef] [PubMed]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express17(10), 8103–8108 (2009).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
[CrossRef]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

L. M. Zhao, D. Y. Tang, F. Lin, and B. Zhao, “Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity,” Opt. Express12(19), 4573–4578 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett.59(17), 2073–2075 (1991).
[CrossRef]

IEEE J. Quantum Electron.

N. Buholz and M. Chodorow, “3.2 - Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron.3(11), 454–459 (1967).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett.21(3), 128–130 (2009).
[CrossRef] [PubMed]

Q. Wang, J. H. Geng, Z. Jiang, T. Luo, and S. B. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photon. Technol. Lett.23(11), 682–684 (2011).
[CrossRef]

Med. Laser Appl.

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: towards a laser surgery with cellular precision,” Med. Laser Appl.20(2), 135–139 (2005).
[CrossRef]

Opt. Commun.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, C. Lu, and H. Y. Tam, “Period-doubling of vector solitons in a ring fiber laser,” Opt. Commun.281(22), 5614–5617 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett.37(13), 2466–2468 (2012).
[CrossRef] [PubMed]

Q. Wang, J. H. Geng, T. Luo, and S. B. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett.34(23), 3616–3618 (2009).
[CrossRef] [PubMed]

A. Braga, J. C. Diels, R. Jain, R. Kay, and L. Wang, “Bidirectional mode-locked fiber ring laser using self-regenerative, passively controlled, threshold gating,” Opt. Lett.35(15), 2648–2650 (2010).
[CrossRef] [PubMed]

R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett.36(5), 609–611 (2011).
[CrossRef] [PubMed]

C. Ouyang, P. Shum, K. Wu, J. H. Wong, H. Q. Lam, and S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Opt. Lett.36(11), 2089–2091 (2011).
[CrossRef] [PubMed]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett.36(19), 3750–3752 (2011).
[CrossRef] [PubMed]

M. Eckerle, C. Kieleck, J. Świderski, S. D. Jackson, G. Mazé, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett.37(4), 512–514 (2012).
[CrossRef] [PubMed]

K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett.33(1), 64–66 (2008).
[CrossRef] [PubMed]

Phys. Rev. A

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
[CrossRef]

Phys. Rev. Lett.

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, Fourth Edition & Applications of Nonlinear Fiber Optics, Second Edition (Academic Press, 2007).

P. Kadwani, R. A. Sims, M. Baudelet, L. Shah, and M. C. Richardson, “Atmospheric propagation testing using broadband thulium fiber systems,” in Conference on Fiber Lasers Applications (FILAS), (Optical Society of America, 2011), paper FWB3.

M. Schmidt, M. Witte, F. Buchali, E. Lach, and H. Bülow, “Adaptive PMD compensation for 170 Gbit/s RZ transmission systems with alternating polarisation,” in Conference on Optical Fiber Communication (OFC), (Optical Society of America, 2005), paper JWA38.
[CrossRef]

S. Appathurai, V. Mikhailov, R. I. Killey, and P. Bayvel, “Suppression of intra-channel nonlinear distortion in 40Gbit/s transmission over standard single mode fibre using alternate-phase RZ and alternate-polarisation,” in Conference on Optical Fiber Communication (OFC), (Optical Society of America, 2004), paper ThE5.

Supplementary Material (1)

» Media 1: AVI (3637 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of Tm-doped fiber laser. SESAMs, semiconductor saturable absorption mirrors; PBS1, PBS2, polarization beam splitters; WP1, WP2, quarter-wave-plates; Combiner, pump combiner with passive fiber pigtail; LD, laser diode centered at 793 nm; DM, dichroic mirror (HR 2000 nm/AR 793 nm); L1, L2, lens with f = 40 mm; L3, lens with f = 20 mm; M1,M2, flat mirrors (HR 2000 nm). (b) Light transmission system. Ix, the polarization component transmitted by PBS1; Iy, the polarization component reflected by PBS1.

Fig. 2
Fig. 2

Mode-locked pulse-trains at different intensity ratios and time spans. Figures 2(a) and 2(b) are for the polarization components of Ix and Figs. 2(c) and 2(d) are for the Iy; Figs. 2(e)-2(h) refer to the Itotal; Figs. 2(a), 2(c), 2(e) and 2(g) are for the equal intensity ratio of Ix and Iy; Figs. 2(b), 2(d), 2(f) and 2(h) are for the unequal ratio of Ix > Iy.

Fig. 3
Fig. 3

Snapshot of switching operation of two polarized components (200 ns/div, Media 1 1.38MB).

Fig. 4
Fig. 4

RF spectra of the outputs.

Fig. 5
Fig. 5

Optical spectrum of output pulses on logarithmic scales.

Fig. 6
Fig. 6

Output pulse shapes at different output average powers. (a) Shapes of Ix; (b) Shapes of Iy.

Fig. 7
Fig. 7

Autocorrelation trace at the maximum output average power.

Metrics