Abstract

For the first time, metallic diffraction grating is investigated to enable efficient coupling in the whispering gallery resonator (WGR). Six-fold field enhancement in the resonator is achieved with respect to their dielectric counter-parts. This higher coupling efficiency is attributed to the surface plasmon excitation which drives the whispering gallery mode along the grating. Fano resonances have been observed in optical reflection. With the metallic grating, single-port end-fire WGR configuration becomes possible - a scheme that has not been demonstrated in any other WGR coupling devices. Hence, it serves as a prototype for portable whispering gallery devices potentially useful in sensing, switching and nonlinear applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett.25(19), 1430–1432 (2000).
    [CrossRef] [PubMed]
  2. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
    [CrossRef]
  3. A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Narrowband tunable photonic notch filter,” Opt. Lett.34(9), 1318–1320 (2009).
    [CrossRef] [PubMed]
  4. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
    [CrossRef]
  5. M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators - precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun.113(1-3), 133–143 (1994).
    [CrossRef]
  6. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
    [CrossRef] [PubMed]
  7. L. Arques, A. Carrascosa, V. Zamora, A. Díez, J. L. Cruz, and M. V. Andrés, “Excitation and interrogation of whispering-gallery modes in optical microresonators using a single fused-tapered fiber tip,” Opt. Lett.36(17), 3452–3454 (2011).
    [CrossRef] [PubMed]
  8. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett.24(11), 723–725 (1999).
    [CrossRef] [PubMed]
  9. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett.20(7), 654–656 (1995).
    [CrossRef] [PubMed]
  10. V. Ilchenko, A. Savchenkov, and L. Maleki, “Diffractive grating coupled whispering gallery mode resonators,” U.S. Patent Application No. 12/157,916 (filing date Jun. 13, 2008).
  11. N. K. Hon and A. W. Poon, “Surface plasmon resonance-assisted coupling to whispering-gallery modes in micropillar resonators,” J. Opt. Soc. Am. B24(8), 1981–1986 (2007).
    [CrossRef]
  12. S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
    [CrossRef]
  13. E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
    [CrossRef]
  14. I. M. White, J. D. Suter, H. Oveys, X. Fan, T. L. Smith, J. Zhang, B. J. Koch, and M. A. Haase, “Universal coupling between metal-clad waveguides and optical ring resonators,” Opt. Express15(2), 646–651 (2007).
    [CrossRef] [PubMed]
  15. M. R. Gartia, M. Lu, and G. L. Liu, “Surface plasmon coupled whispering gallery mode for guided and free-space electromagnetic waves,” Plasmonics, DOI .
    [CrossRef]
  16. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B16(1), 147 (1999).
    [CrossRef]
  17. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15(11), 2154–2165 (1997).
    [CrossRef]
  18. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B24(3), 653–659 (2007).
    [CrossRef]
  19. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  20. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt.4(10), 1275–1297 (1965).
    [CrossRef]
  21. B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
    [CrossRef]
  22. C. Y. Chao and L. J. Guo, “Biomchemical sensors based on polymer microrings with sharp asymmetric resonance,” Appl. Phys. Lett.83(8), 1527 (2003).
    [CrossRef]
  23. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86(26), 261106 (2005).
    [CrossRef]

2011 (4)

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

L. Arques, A. Carrascosa, V. Zamora, A. Díez, J. L. Cruz, and M. V. Andrés, “Excitation and interrogation of whispering-gallery modes in optical microresonators using a single fused-tapered fiber tip,” Opt. Lett.36(17), 3452–3454 (2011).
[CrossRef] [PubMed]

E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
[CrossRef]

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

2010 (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

2009 (1)

2008 (1)

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

2007 (3)

2006 (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

2005 (1)

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86(26), 261106 (2005).
[CrossRef]

2003 (1)

C. Y. Chao and L. J. Guo, “Biomchemical sensors based on polymer microrings with sharp asymmetric resonance,” Appl. Phys. Lett.83(8), 1527 (2003).
[CrossRef]

2000 (2)

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett.25(19), 1430–1432 (2000).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

1999 (2)

1997 (1)

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15(11), 2154–2165 (1997).
[CrossRef]

1995 (1)

1994 (1)

M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators - precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun.113(1-3), 133–143 (1994).
[CrossRef]

1965 (1)

Andrés, M. V.

Arnold, S.

Arques, L.

Blackledge, C. W.

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett.25(19), 1430–1432 (2000).
[CrossRef] [PubMed]

Carrascosa, A.

Chao, C. Y.

C. Y. Chao and L. J. Guo, “Biomchemical sensors based on polymer microrings with sharp asymmetric resonance,” Appl. Phys. Lett.83(8), 1527 (2003).
[CrossRef]

Chen, Y. L.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

Chiba, A.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86(26), 261106 (2005).
[CrossRef]

Cruz, J. L.

Dale, E. B.

E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
[CrossRef]

Díez, A.

Fan, X.

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Flanders, B. N.

E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
[CrossRef]

Fujiwara, H.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86(26), 261106 (2005).
[CrossRef]

Ganta, D.

E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
[CrossRef]

Gartia, M. R.

M. R. Gartia, M. Lu, and G. L. Liu, “Surface plasmon coupled whispering gallery mode for guided and free-space electromagnetic waves,” Plasmonics, DOI .
[CrossRef]

Gong, Q.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

Gorodetsky, M. L.

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B16(1), 147 (1999).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators - precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun.113(1-3), 133–143 (1994).
[CrossRef]

Griffel, G.

Guo, L. J.

C. Y. Chao and L. J. Guo, “Biomchemical sensors based on polymer microrings with sharp asymmetric resonance,” Appl. Phys. Lett.83(8), 1527 (2003).
[CrossRef]

Haase, M. A.

Hagness, S. C.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15(11), 2154–2165 (1997).
[CrossRef]

Hessel, A.

Ho, S. T.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15(11), 2154–2165 (1997).
[CrossRef]

Holler, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

Hon, N. K.

Hotta, J.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86(26), 261106 (2005).
[CrossRef]

Ilchenko, V. S.

Jiang, X. F.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Koch, B. J.

Li, B. B.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

Li, Y.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

Liang, W.

Liu, G. L.

M. R. Gartia, M. Lu, and G. L. Liu, “Surface plasmon coupled whispering gallery mode for guided and free-space electromagnetic waves,” Plasmonics, DOI .
[CrossRef]

Liu, Y. C.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

Lu, M.

M. R. Gartia, M. Lu, and G. L. Liu, “Surface plasmon coupled whispering gallery mode for guided and free-space electromagnetic waves,” Plasmonics, DOI .
[CrossRef]

Maleki, L.

Matsko, A. B.

A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Narrowband tunable photonic notch filter,” Opt. Lett.34(9), 1318–1320 (2009).
[CrossRef] [PubMed]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Oliner, A. A.

Oveys, H.

Painter, O.

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett.25(19), 1430–1432 (2000).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Poon, A. W.

Rafizadeh, D.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15(11), 2154–2165 (1997).
[CrossRef]

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

Rosenberger, A. T.

E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
[CrossRef]

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Sasaki, K.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86(26), 261106 (2005).
[CrossRef]

Savchenkov, A. A.

Seidel, D.

Sercel, P. C.

Serpengüzel, A.

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Smith, T. L.

Suter, J. D.

Taflove, A.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15(11), 2154–2165 (1997).
[CrossRef]

Takeuchi, S.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86(26), 261106 (2005).
[CrossRef]

Teraoka, I.

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett.25(19), 1430–1432 (2000).
[CrossRef] [PubMed]

White, I. M.

Wicksted, J. P.

E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
[CrossRef]

Xiao, Y. F.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

Yao, X. S.

Yu, D. J.

E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
[CrossRef]

Zamora, V.

Zhang, J.

Zou, C. L.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biomchemical sensors based on polymer microrings with sharp asymmetric resonance,” Appl. Phys. Lett.83(8), 1527 (2003).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86(26), 261106 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

E. B. Dale, D. Ganta, D. J. Yu, B. N. Flanders, J. P. Wicksted, and A. T. Rosenberger, “Spatially localized enhancement of evanescent coupling to whispering-gallery modes at 1550 nm due to surface plasmon resonances of Au nanowires,” IEEE J. Sel. Top. Quantum Electron.17(4), 979–984 (2011).
[CrossRef]

J. Lightwave Technol. (1)

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15(11), 2154–2165 (1997).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators - precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun.113(1-3), 133–143 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Surface plasmon coupled whispering gallery mode for guided and free-space electromagnetic waves (1)

M. R. Gartia, M. Lu, and G. L. Liu, “Surface plasmon coupled whispering gallery mode for guided and free-space electromagnetic waves,” Plasmonics, DOI .
[CrossRef]

Other (1)

V. Ilchenko, A. Savchenkov, and L. Maleki, “Diffractive grating coupled whispering gallery mode resonators,” U.S. Patent Application No. 12/157,916 (filing date Jun. 13, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic diagram of the metallic grating coupled to a WGR; a is the grating period, h is the height of the grating, d is the shortest vertical distance from the central groove to the WGR, the incident light is a Gaussian wave and the metallic grating is situated on a dielectric substrate.

Fig. 2
Fig. 2

(a) Normalized optical power spectra for coupled WGM in a silica micro-disk of 4 µm in radius by a gold grating (d = 133 nm, a = 435 nm, h = 100 nm) and silica grating (d = 58 nm, a = 435 nm, h = 100 nm) respectively. Insets: Field intensity distribution for the first and second radial order WGMs, color scales are normalized to the respective images. Field intensity distribution of the coupled WGM from (b) silica grating; (c) gold grating, before the light travels half of the circumference of the disk after coupling. Color scales of (b) and (c) are normalized to that of (c) and are both in log scale.

Fig. 3
Fig. 3

Electric field intensity and coupling coefficient as a function of the separation d for (a) silica grating; (b) gold grating. The intensity is measured at spatial maximum at the respective resonant wavelengths for each data point. The insets show the respective field distribution of the coupled WGM when d is optimized for maximum coupled field intensity (silica: d = 58 nm; gold: d = 133 nm), both color scale and left axis of the graphs are normalized to the results of gold grating.

Fig. 4
Fig. 4

Reflected optical power spectrum with and without the whispering gallery micro-disk for (a) silica grating (d = 30 nm); (b) gold grating (d = 135 nm).

Fig. 5
Fig. 5

(a) Normalized optical power spectrum for coupled WGM by a gold grating (d = 310 nm; h = 100 nm; a = 1300 nm), inset: field distribution for the WGM at a resonant wavelength of 1.148 µm, color scale is normalized to the image itself; (b) Reflected optical power spectra of the gold grating with and without the presence of WGR.

Metrics