Abstract

We report on a monolithic 1645 nm Er:YAG nonplanar ring oscillator (NPRO) resonantly pumped by a fiber-coupled laser diode. In the experiment, an up to 550 mW single frequency laser output at 1645.2 nm was obtained, corresponding to a slope efficiency of 19.1% and an absolute efficiency of 6.0%. The beam quality M2 was measured to be 2.1 at the highest output power.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE5791, 167–174 (2005).
    [CrossRef]
  2. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett.31(6), 754–756 (2006).
    [CrossRef] [PubMed]
  3. N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron.46(7), 1039–1042 (2010).
    [CrossRef]
  4. L. Zhu, C. Gao, R. Wang, M. Gao, Y. Zheng, and Z. Wang, “Resonantly pumped 1.645 μm single longitudinal mode Er:YAG laser with intracavity etalons,” Appl. Opt.51(10), 1616–1618 (2012).
    [CrossRef] [PubMed]
  5. J. W. Kim, J. K. Sahu, and W. A. Clarkson, “Impact of energy-transfer-upconversion on the performance hybrid Er:YAG lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA4.
  6. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett.10(2), 65–67 (1985).
    [CrossRef] [PubMed]
  7. T. J. Kane, A. C. Nilsson, and R. L. Byer, “Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator,” Opt. Lett.12(3), 175–177 (1987).
    [CrossRef] [PubMed]
  8. D. W. Chen, P. M. Belden, T. S. Rose, and S. M. Beck, “Narrowband Er:YAG nonplanar ring oscillator at 1645 nm,” Opt. Lett.36(7), 1197–1199 (2011).
    [CrossRef] [PubMed]
  9. C. Q. Gao, L. N. Zhu, R. Wang, M. W. Gao, Y. Zheng, and L. Wang, “6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator,” Opt. Lett.37(11), 1859–1861 (2012).
    [CrossRef] [PubMed]
  10. L. Zhu, M. J. Wang, J. Zhou, and W. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express19(27), 26810–26815 (2011).
    [CrossRef] [PubMed]
  11. A. C. Nilsson, E. Gustafson, and R. L. Byer, “Eigenpolarization theory of monolithic nonplanar oscillators,” IEEE J. Quantum Electron.25(4), 767–790 (1989).
    [CrossRef]
  12. J. O. White, “Parameters for Quantitative Comparison of Two-, Three-, and Four-Level Laser Media, Operating Wavelengths, and Temperatures,” IEEE J. Quantum Electron.45(10), 1213–1220 (2009).
    [CrossRef]
  13. D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, “Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm: performance issues,” Opt. Lett.34(10), 1501–1503 (2009).
    [CrossRef] [PubMed]
  14. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers,” Opt. Express17(14), 11935–11943 (2009).
    [CrossRef] [PubMed]
  15. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ laser,” J. Opt. Soc. Am. B24(9), 2454–2460 (2007).
    [CrossRef]
  16. T. M. Kane and T. S. Kubo, “Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper ML3.
  17. W. A. Clarkson, R. Koch, and D. C. Hanna, “Room-temperature diode-bar-pumped Nd:YAG laser at 946 nm,” Opt. Lett.21(10), 737–739 (1996).
    [CrossRef] [PubMed]

2012 (2)

2011 (2)

2010 (1)

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron.46(7), 1039–1042 (2010).
[CrossRef]

2009 (3)

2007 (1)

2006 (1)

2005 (1)

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE5791, 167–174 (2005).
[CrossRef]

1996 (1)

1989 (1)

A. C. Nilsson, E. Gustafson, and R. L. Byer, “Eigenpolarization theory of monolithic nonplanar oscillators,” IEEE J. Quantum Electron.25(4), 767–790 (1989).
[CrossRef]

1987 (1)

1985 (1)

Beck, S. M.

Belden, P. M.

Birnbaum, M.

Byer, R. L.

Chang, N. W.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron.46(7), 1039–1042 (2010).
[CrossRef]

Chen, D. W.

Chen, W.

Clarkson, W. A.

Dubinskii, M.

Gao, C.

Gao, C. Q.

Gao, M.

Gao, M. W.

Garbuzov, D.

Gatt, P.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE5791, 167–174 (2005).
[CrossRef]

Gustafson, E.

A. C. Nilsson, E. Gustafson, and R. L. Byer, “Eigenpolarization theory of monolithic nonplanar oscillators,” IEEE J. Quantum Electron.25(4), 767–790 (1989).
[CrossRef]

Hanna, D. C.

Hartman, R.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE5791, 167–174 (2005).
[CrossRef]

Hosken, D. J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron.46(7), 1039–1042 (2010).
[CrossRef]

Kane, T. J.

Kim, J. W.

Koch, R.

Kudryashov, I.

Mackenzie, J. I.

Malm, A. I. R.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE5791, 167–174 (2005).
[CrossRef]

Merkle, L. D.

Munch, J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron.46(7), 1039–1042 (2010).
[CrossRef]

Nilsson, A. C.

A. C. Nilsson, E. Gustafson, and R. L. Byer, “Eigenpolarization theory of monolithic nonplanar oscillators,” IEEE J. Quantum Electron.25(4), 767–790 (1989).
[CrossRef]

T. J. Kane, A. C. Nilsson, and R. L. Byer, “Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator,” Opt. Lett.12(3), 175–177 (1987).
[CrossRef] [PubMed]

Ottaway, D.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron.46(7), 1039–1042 (2010).
[CrossRef]

Rose, T. S.

Sahu, J. K.

Shen, D. Y.

Stoneman, R. C.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE5791, 167–174 (2005).
[CrossRef]

Veitch, P. J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron.46(7), 1039–1042 (2010).
[CrossRef]

Wang, L.

Wang, M. J.

Wang, R.

Wang, Z.

White, J. O.

J. O. White, “Parameters for Quantitative Comparison of Two-, Three-, and Four-Level Laser Media, Operating Wavelengths, and Temperatures,” IEEE J. Quantum Electron.45(10), 1213–1220 (2009).
[CrossRef]

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ laser,” J. Opt. Soc. Am. B24(9), 2454–2460 (2007).
[CrossRef]

Zheng, Y.

Zhou, J.

Zhu, L.

Zhu, L. N.

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron.46(7), 1039–1042 (2010).
[CrossRef]

A. C. Nilsson, E. Gustafson, and R. L. Byer, “Eigenpolarization theory of monolithic nonplanar oscillators,” IEEE J. Quantum Electron.25(4), 767–790 (1989).
[CrossRef]

J. O. White, “Parameters for Quantitative Comparison of Two-, Three-, and Four-Level Laser Media, Operating Wavelengths, and Temperatures,” IEEE J. Quantum Electron.45(10), 1213–1220 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (7)

Proc. SPIE (1)

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE5791, 167–174 (2005).
[CrossRef]

Other (2)

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “Impact of energy-transfer-upconversion on the performance hybrid Er:YAG lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA4.

T. M. Kane and T. S. Kubo, “Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper ML3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of Er:YAG NPRO crystal

Fig. 2
Fig. 2

Schematic of the monolithic Er:YAG NPRO laser end-pumped by 1532 nm laser diode.

Fig. 3
Fig. 3

F-P spectrum of the single-frequency Er:YAG NRPO.

Fig. 4
Fig. 4

The output powers as a function of the pump power

Fig. 5
Fig. 5

Measurement of M2 factor with the highest output power. Inset, typical two-dimensional beam profiles taken by a Spiricon PyrocamI pyroelectric camera.

Fig. 6
Fig. 6

Output spectrum of the Er:YAG NPRO laser.

Fig. 7
Fig. 7

Er:YAG NPRO frequency as a function of the crystal temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

df/dT=f[(1/n)dn/dT+α],

Metrics