Abstract

We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference. Optical Society of America, 2012, p. PDP5C.1.
  2. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
    [CrossRef]
  3. X. J. Cao, V. Anand, Y. Xiong, and C. Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE J. Sel. Areas Comm.21(7), 1081–1095 (2003).
    [CrossRef]
  4. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
    [CrossRef]
  5. T. Ban, H. Hasegawa, K. Sato, T. Watanabe, and H. Takahashi, “A novel large-scale OXC architecture that employs wavelength path switching and fiber selection,” in European Conference and Exhibition on Optical Communication, Optical Society of America, 2012, p. We.3.D.1.
  6. Y. Iwai, H. Hasegawa, and K. Sato, “Large-Scale photonic node architecture that utilizes interconnected small scale optical cross-connect sub-systems,” in European Conference and Exhibition on Optical Communication, Optical Society of America, 2012, p. We.3.D.3.
  7. N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in European Conference and Exhibition on Optical Communication. Optical Society of America, 2012, p. Th.3.D.3.
  8. N. Amaya, G. S. Zervas, B. R. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in Optical Communication (ECOC), 2011 37th European Conference and Exhibition on, Sept. 2011.
  9. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006).
    [CrossRef]
  10. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006, March 2006.
  11. K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” in OptoeElectronics and Communications Conference (OECC), 2010 15th, July 2010, 540 –542.
  12. M. Garrich, N. Amaya, G. S. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in Optical Network Design and Modelling (ONDM), 2012 16th Conference on, Apr. 2012.
  13. W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multi-core fibers,” in Photonics Society Summer Topical Meeting Series, 2012 IEEE, July 2012, 230 –231.
  14. T. A. Truex, A. A. Bent, and N. W. Hagood, “Beam-steering optical switch fabric utilizing piezoelectric actuation technology,” http:/www.polatis.com/products/technology.asp .
  15. N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: Flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber,” in 37th European Conference and Exhibition on Optical Communication (ECOC), 2011, Sept. 2011.

2012 (1)

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

2009 (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

2006 (1)

2003 (1)

X. J. Cao, V. Anand, Y. Xiong, and C. Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE J. Sel. Areas Comm.21(7), 1081–1095 (2003).
[CrossRef]

Anand, V.

X. J. Cao, V. Anand, Y. Xiong, and C. Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE J. Sel. Areas Comm.21(7), 1081–1095 (2003).
[CrossRef]

Cao, X. J.

X. J. Cao, V. Anand, Y. Xiong, and C. Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE J. Sel. Areas Comm.21(7), 1081–1095 (2003).
[CrossRef]

Ford, J. E.

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Lord, A.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Qiao, C.

X. J. Cao, V. Anand, Y. Xiong, and C. Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE J. Sel. Areas Comm.21(7), 1081–1095 (2003).
[CrossRef]

Solgaard, O.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Wu, M. C.

Xiong, Y.

X. J. Cao, V. Anand, Y. Xiong, and C. Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE J. Sel. Areas Comm.21(7), 1081–1095 (2003).
[CrossRef]

Yoo, S. J. B.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

IEEE Commun. Mag. (2)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

X. J. Cao, V. Anand, Y. Xiong, and C. Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE J. Sel. Areas Comm.21(7), 1081–1095 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Other (11)

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference. Optical Society of America, 2012, p. PDP5C.1.

T. Ban, H. Hasegawa, K. Sato, T. Watanabe, and H. Takahashi, “A novel large-scale OXC architecture that employs wavelength path switching and fiber selection,” in European Conference and Exhibition on Optical Communication, Optical Society of America, 2012, p. We.3.D.1.

Y. Iwai, H. Hasegawa, and K. Sato, “Large-Scale photonic node architecture that utilizes interconnected small scale optical cross-connect sub-systems,” in European Conference and Exhibition on Optical Communication, Optical Society of America, 2012, p. We.3.D.3.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in European Conference and Exhibition on Optical Communication. Optical Society of America, 2012, p. Th.3.D.3.

N. Amaya, G. S. Zervas, B. R. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in Optical Communication (ECOC), 2011 37th European Conference and Exhibition on, Sept. 2011.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006, March 2006.

K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” in OptoeElectronics and Communications Conference (OECC), 2010 15th, July 2010, 540 –542.

M. Garrich, N. Amaya, G. S. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in Optical Network Design and Modelling (ONDM), 2012 16th Conference on, Apr. 2012.

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multi-core fibers,” in Photonics Society Summer Topical Meeting Series, 2012 IEEE, July 2012, 230 –231.

T. A. Truex, A. A. Bent, and N. W. Hagood, “Beam-steering optical switch fabric utilizing piezoelectric actuation technology,” http:/www.polatis.com/products/technology.asp .

N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: Flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber,” in 37th European Conference and Exhibition on Optical Communication (ECOC), 2011, Sept. 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of multi-granular switching in space, frequency and time, using AoD.

Fig. 2
Fig. 2

Comparison of multiple switching granularities provided by AoD and a conventional ROADM design in an SDM environment.

Fig. 3
Fig. 3

(a) Experimental setup of the elastic SDM and multi-granular network, (b) Optical spectra and time plots.

Fig. 4
Fig. 4

Combined MCF and SDM MUX/DEMUX (a) insertion loss for each core, (b)inter-core crosstalk.

Fig. 5
Fig. 5

(a) OSNR of each channel (λ), legend = drop node - □nal MCF(core), (b) BER curves for Tx-2 F λ1218 and λ2227, (c) E-to-E BER results for 555G (52sub-carriers) and (d) typical BER curves for different channels and paths.

Fig. 6
Fig. 6

Inter-core crosstalk penalty results for Tx-1 λ6 (42.7 Gb/s) and Tx-1 λ0 (555 Gb/s) SC26 through MCF1-core 1 and MCF2-core 1. For the measurements without crosstalk cores 2-7 of MCF1 and MCF2 were disconnected.

Tables (1)

Tables Icon

Table 1 Summary of channels used in the experimental SDM networking demonstration

Metrics