Abstract

We demonstrate a fiber-based slow light system using a carbon disulfide (CS2) filled integrated liquid-core optical fiber (i-LCOF). Using 1 meter of i-LCOF we were able to delay 18ps pulses up to 34ps; a delay of 188% of the pulse width. This experimental setup serves as a foundation for slow-light experiments in other nonlinear liquids. Numerical simulations of pulse-propagation equations confirmed the observed delay and a simplified method is presented that can be applied to calculate induced delay for non-cw Stokes pulses. The system is all-fiber and compact with delays greater than a pulse width, indicating potential application as an ultrafast controllable delay line for time division multiplexing in multiGb/s telecommunication systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM Over 165-km SSMF within C- and L-bands,” J. Lightwave Technol.30(10), 1540–1548 (2012).
    [CrossRef]
  2. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News17(4), 18–23 (2006).
    [CrossRef]
  3. R. W. Boyd, Nonlinear Optics, 4 ed. (Academic Press, 2008).
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
    [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  6. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon.2(3), 287–318 (2010).
    [CrossRef]
  7. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
    [CrossRef] [PubMed]
  8. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express13(1), 82–88 (2005).
    [CrossRef] [PubMed]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
    [CrossRef] [PubMed]
  10. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett.32(3), 217–219 (2007).
    [CrossRef] [PubMed]
  11. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express13(16), 6092–6098 (2005).
    [CrossRef] [PubMed]
  12. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express20(7), 8148–8154 (2012).
    [CrossRef] [PubMed]
  13. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B12(12), 2467–2474 (1995).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4 ed. (Academic Press, 2007).
  15. Y. Xu, X. Chen, and Y. Zhu, “Modeling of micro-diameter-scale liquid core optical fiber filled with various liquids,” Opt. Express16(12), 9205–9212 (2008).
    [CrossRef] [PubMed]
  16. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B13(10), 2170–2177 (1996).
    [CrossRef]
  17. L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics2(8), 474–481 (2008).
    [CrossRef]
  18. L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).
  19. I. D. Rukhlenko, M. Premaratne, I. L. Garanovich, A. A. Sukhorukov, and G. P. Agrawal, “Analytical study of pulse amplification in silicon Raman amplifiers,” Opt. Express18(17), 18324–18338 (2010).
    [CrossRef] [PubMed]
  20. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express14(6), 2317–2322 (2006).
    [CrossRef] [PubMed]
  21. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol.17(4), 704–715 (1999).
    [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  23. A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003).
    [CrossRef]
  24. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express2(11), 1588–1611 (2012).
    [CrossRef]
  25. G. P. Agrawal, Fiber-Optic Communication Systems, 3 ed. (John Wiley & Sons, 2002).

2012

2010

2009

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

2008

2007

2006

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express14(6), 2317–2322 (2006).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News17(4), 18–23 (2006).
[CrossRef]

2005

2003

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301(5630), 200–202 (2003).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol.17(4), 704–715 (1999).
[CrossRef]

1996

1995

Agrawal, G. P.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News17(4), 18–23 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Chen, X.

Chériaux, G.

DeSimone, A.

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express14(6), 2317–2322 (2006).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News17(4), 18–23 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

Garanovich, I. L.

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News17(4), 18–23 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Giessen, H.

Gissibl, T.

Hales, J. M.

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Haus, H. A.

Headley, C.

Herráez, M. G.

Hotate, K.

Hu, J.

Huang, M.-F.

Huang, Y.-K.

Ip, E.

Joffre, M.

Kedenburg, S.

Khurgin, J. B.

Kieu, K.

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express20(7), 8148–8154 (2012).
[CrossRef] [PubMed]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

Laine, J. P.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Lepetit, L.

Lipson, M.

Little, B. E.

Merzlyak, E.

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

Norwood, R. A.

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express20(7), 8148–8154 (2012).
[CrossRef] [PubMed]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

Okawachi, Y.

Perry, J. W.

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

Peyghambarian, N.

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express20(7), 8148–8154 (2012).
[CrossRef] [PubMed]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

Premaratne, M.

Qian, D.

Rukhlenko, I. D.

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003).
[CrossRef]

Schneebeli, L.

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express20(7), 8148–8154 (2012).
[CrossRef] [PubMed]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Shao, Y.

Sharping, J. E.

Song, K. Y.

Sukhorukov, A. A.

Thevenaz, L.

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics2(8), 474–481 (2008).
[CrossRef]

Thévenaz, L.

Vieweg, M.

Wang, T.

Xu, Q.

Xu, Y.

Zhu, Y.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Adv. Opt. Photon.

J. Appl. Phys.

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics2(8), 474–481 (2008).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Opt. Photon. News

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News17(4), 18–23 (2006).
[CrossRef]

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005).
[CrossRef] [PubMed]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301(5630), 200–202 (2003).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Other

R. W. Boyd, Nonlinear Optics, 4 ed. (Academic Press, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4 ed. (Academic Press, 2007).

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Measurement of the Raman gain coefficient via inverse Raman scattering,” (Manuscript in preparation).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

G. P. Agrawal, Fiber-Optic Communication Systems, 3 ed. (John Wiley & Sons, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The experimental setup used to demonstrate slow light in a CS2-liquid-core optical fiber Raman amplifier (ML laser: mode-locked fiber laser; FPC: fiber polarization controller; FBG: fiber Bragg grating; EDFA: erbium-doped fiber amplifier; i-LCOF: integrated liquid-core optical fiber; WDM: waveguide division multiplexer; VDL: variable delay line). Inset: The optical spectrum of the 1553nm picosecond pump and the generated Raman signal at 1729nm.

Fig. 2
Fig. 2

(a) OSA interference spectrum of the signal and reference pulse at two different pump powers, and (b) their respective temporal positions.

Fig. 3
Fig. 3

(a) Signal delay with respect to the pump peak power P0 and (b) the respective gain.

Fig. 4
Fig. 4

Computed Stokes-pulse delay as a function of pump-Stokes misalignment for various pump peak powers.

Fig. 5
Fig. 5

Theoretical analysis of the Stokes’ delay with respect to the pump peak power for a pump-Stokes misalignment of −15ps.

Fig. 6
Fig. 6

Computed evolution of pump and Stokes pulses in LCOF at different propagation lengths when misaligned by −15ps for a pump-peak power of P0 = 1.5W.

Fig. 7
Fig. 7

Theoretical analysis of the Stokes’ delay with respect to the pump peak power for a 300ps pump. Inset: Pump-Stokes interaction after 1meter LCOF for P0 = 1W. In all cases, the pump-Stokes misalignment is −15ps.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S(ω)= | E sig (ω) | 2 + | E ref (ω) | 2 +2| E sig (ω) || E ref (ω) |cos[ ϕ sig ϕ ref ],
A s z (z,t)i γ s f R A p (z,t) t h R (tt') A s (z,t') A p * (z,t') e i Ω R (tt') dt',
A s z (z,ω)i γ s f R P 0 h R (ω ω s Ω R ) A s (z,ω),
A s (z,t) 1 2π A s (z=0,ω) e [i γ s f R P 0 h R (ω ω s Ω R )z] e [i(ω ω s )t] dω.
A s (z,t)exp[ g R P 0 2 A eff z ] A s [ z=0,t g R P 0 A eff (2πc)δν z ],

Metrics